A novel polymeric microfluidic device with an on-chip enzyme reactor has been developed for the characterization of recombinant glycoproteins. The enzyme reactor chip packed with PNGase F-modified solid support material was combined with a microfluidic glycan cleanup chip and a commercially available HPLC-chip to perform glycoprotein deglycosylation, protein removal, glycan capture, glycan LC separation, and nanoelectrospray into a time-of-flight mass spectrometry (TOF-MS) system. With this integrated chip, the combined sample preparation and sample analysis time was reduced from multiple hours to less than 10 min. A once tedious and time-consuming glycan analysis workflow is now integrated into an HPLC-chip device. Glycan profiling analysis has been achieved with as little as 100 ng of monoclonal antibody. Furthermore, a single chip was shown to retain activity and perform equivalently for over 250 replicate glycan profiles from a recombinant antibody.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac901326uDOI Listing

Publication Analysis

Top Keywords

enzyme reactor
8
glycan
7
chip
5
characterization igg
4
igg n-glycans
4
n-glycans employing
4
employing microfluidic
4
microfluidic chip
4
chip integrates
4
integrates glycan
4

Similar Publications

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

Continuous high-intensity light exposure can inhibit anaerobic ammonium oxidation (anammox) bacteria activity, though the specific impacts on anammox reactor performance remain unclear. This study investigates the effects of long-term light stress on anammox sludge reactors and explores the use of tea polyphenols as an engineering interventions to mitigate photo oxidation damage. The results showed that the nitrogen removal efficiency (NRE) of the reactor rapidly deteriorated to 41.

View Article and Find Full Text PDF

Study of the hydrodynamic parameters in an internal flat-plate airlift reactor for the increased degradation of newspaper by .

Environ Technol

January 2025

Colegio de Postgraduados, Posgrado de Edafología, Microbiología de Suelos, Montecillo, Estado de México, México.

The aim of our study was to characterize the hydrodynamics and mass transfer in a novel internal flat-plate airlift cylindrical reactor to increase the biodegradation of newspaper. We evaluated the degradation kinetics of newspaper in a batch culture with . Gas holdup, mixing time, the Reynolds number, and volumetric mass transfer coefficient () properties were characterized in biphasic and triphasic systems in order to optimize their operational conditions.

View Article and Find Full Text PDF

Regulation of the phenolic release and conversion in oats (Avena sativa L.) by co-microbiological fermentation with Monascus anka, Saccharomyces cerevisiae and Bacillus subtilis.

Bioprocess Biosyst Eng

December 2024

Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.

Microbial fermentation is an effective method to improve the functional activity of oats (Avena sativa L.), while there are some limitations to the advantages of single microbial fermentation. In this study, a microbial co-culture fermentation system with Monascus anka, Saccharomyces cerevisiae and Bacillus subtilis to release and conversion oat phenolics was established.

View Article and Find Full Text PDF

Cell-Free Gene Expression: Methods and Applications.

Chem Rev

December 2024

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!