Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Imatinib is a targeted selective inhibitor of chimaeric Bcr-Abl tyrosine kinase developed for effective therapy of chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL) patients. Unfortunately, evidence now exists to indicate that a portion of such patients treated with imatinib acquire resistance and subsequently relapse. To understand the heterogeneous basis of imatinib resistance, we have investigated the possible mechanism(s) via which hemin, a key regulator of hematopoiesis that is converted to heme intracellularly, renders CML cells less susceptible to imatinib. Hemin at 30-90 aM protected a substantial proportion (>40%) of human Bcr-Abl(+) CML cells (K-562 and KU-812) from imatinib-induced cell killing by increasing the imatinib IC50 value, reducing DNA damage, and promoting erythroid differentiation. RT-PCR assessment of RNA transcripts encoded by human GAPDH, Ggamma-globin, Bcr-Abl, HO-2, Hpr-6, CEBPa, Bcl-2a, Bcl-2b, and Nrf2 genes revealed that hemin selectively counteracted the repression of antiapoptotic Bcl-2a, Bcl-2b, and Nrf2 genes in imatinib-treated cells. These genes are markedly repressed by imatinib alone in human K-562 CML cells. Hemin, however, had no detectable effect on the expression of the Bcr-Abl gene. Moreover, inhibition of de novo heme biosynthesis by succinyl-acetone enhanced the killing effect of imatinib. These data clearly indicate that: (a) cellular heme resulted from de novo biosynthesis and hemin uptake alters the developmental stage of human Bcr-Abl(+) CML cells and their susceptibility to imatinib; (b) cellular heme counteracts the ability of imatinib to repress Bcl-2 and Nrf2 gene expression; and (c) inhibitors of de novo biosynthesis can be developed and combined with imatinib to enhance its antileukemic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096504009789745557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!