Background: The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut.
Methodology/principal Findings: We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree.
Conclusions/significance: This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752195 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007353 | PLOS |
PLoS One
December 2021
Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
The family Arecaceae is distributed throughout tropical and subtropical regions of the world. Among the five subfamilies, Arecoideae is the most species-rich and still contains some ambiguous inter-generic relationships, such as those within subtribes Attaleinae and Bactridineae. The hypervariable regions of plastid genomes (plastomes) are interesting tools to clarify unresolved phylogenetic relationships.
View Article and Find Full Text PDFGenet Mol Biol
September 2020
Universidade Federal do Paraná, Programa de Pós-graduação em Botânica, Curitiba, Paraná, Brazil.
Butia eriospatha is an endemic palm species from the Atlantic Rainforest in Brazil, a biodiversity hotspot. This species is currently listed in the IUCN red list as vulnerable and lacks specific plastid markers for population genetics studies. In addition, the evolutionary relationship within the genus Butia is not yet well resolved.
View Article and Find Full Text PDFAm J Bot
October 2015
CIRAD, UMR DIADE, F-34398 Montpellier, France.
Premise Of The Study: The genome size of a species (C-value) is associated with growth, development and adaptation to environmental changes. Angiosperm C-values range 1200-fold and frequently vary within species, although little is known about the impacts of domestication on genome size. Genome size variation among related species of palms is of evolutionary significance because changes characterize clades and may be associated with polyploidy, transposon amplifications, deletions, or rearrangements.
View Article and Find Full Text PDFCladistics
October 2015
USDA-ARS-SHRS-National Germplasm Repository, 13601 Old Cutler Rd., Miami, FL, 33158, USA.
Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci, we amplified DNA from 96 samples representing all genera of the palm tribe Cocoseae as well as outgroup tribes Reinhardtieae and Roystoneae.
View Article and Find Full Text PDFPLoS One
October 2009
USDA-ARS-SHRS-National Germplasm Repository, Miami, Florida, United States of America.
Background: The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!