Basal cancer cell survival involves JNK2 suppression of a novel JNK1/c-Jun/Bcl-3 apoptotic network.

PLoS One

YCR P53 Research Unit, Department of Biology, University of York, York, United Kingdom.

Published: October 2009

AI Article Synopsis

Article Abstract

Background: The regulation of apoptosis under basal (non-stress) conditions is crucial for normal mammalian development and also for normal cellular turnover in different tissues throughout life. Deficient regulation of basal apoptosis, or its perturbation, can result in impaired development and/or disease states including cancer. In contrast to stress-induced apoptosis the regulation of apoptosis under basal conditions is poorly understood. To address this issue we have compared basal- and stress-induced apoptosis in human epithelial cells of normal and cancerous origins. For this purpose we focussed our study on the opposing pro-apoptotic JNK/anti-apoptotic NFkappaB pathways.

Methodology/principal Findings: Combinatorial RNAi plus gene knockout were employed to access and map basal regulatory pathways of apoptosis. Follow-on, in-depth analyses included exogenous expression of phosphorylation mutants and chromatin immunoprecipitation. We demonstrate that basal apoptosis is constitutively suppressed by JNK2 in a range of human cancer cell lines. This effect was not observed in non-cancer cells. Silencing JNK2 by RNAi resulted in JNK1-dependent apoptosis of cancer cells via up-regulation of the AP-1 factor c-Jun. Unexpectedly we discovered that JNK1 and c-Jun promote basal apoptosis in the absence of "activating phosphorylations" typically induced by stress. Hypo-phosphorylated c-Jun accumulated to high levels following JNK2 silencing, auto-regulated its own expression and suppressed expression of Bcl-3, an unusual IkappaB protein and regulator of NFkappaB. Basal apoptosis was mediated by components of the TNFalpha response pathway but was mechanistically distinct from TNFalpha-induced apoptosis.

Conclusions/significance: Our results demonstrate that mechanistically distinct pathways operate to regulate apoptosis in mammalian cells under basal (physiological) versus stress-induced conditions. We also describe a novel apoptotic network which governs the basal survival of cancer cells. Such information is crucial for understanding normal cellular turnover during mammalian development and subsequently throughout life. This information also opens new avenues for therapeutic intervention in human proliferative disease states including cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752166PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007305PLOS

Publication Analysis

Top Keywords

basal apoptosis
16
apoptosis
11
basal
10
cancer cell
8
apoptotic network
8
regulation apoptosis
8
apoptosis basal
8
mammalian development
8
normal cellular
8
cellular turnover
8

Similar Publications

Complex phytonutrients (CPS) have attracted extensive interest due to their anti-inflammatory effects. This investigation focused on the impact of CPS on rumen health in lambs on high-concentrate diets, emphasizing growth performance, ruminal fermentation, epithelial barrier integrity, ruminal metabolism, and microbial communities. A total of 54 lambs, 3 months old and with a 30.

View Article and Find Full Text PDF

Biochemical, Histological, and Multi-Omics Analyses Reveal the Molecular and Metabolic Mechanisms of Cold Stress Response in the Chinese Soft-Shelled Turtle ().

Biology (Basel)

January 2025

Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

The Chinese soft-shelled turtle (), a type of warm-water reptile, is frequently chosen as the model animal to understand how organisms respond to environmental stressors. However, the responsive mechanism of to natural cold stress is unclear, especially in terms of metabolic pattern and molecular pathways. Herein, plasma biochemical, hepatic morphological, apoptotic, transcriptomic, and metabolomic detection methods were performed to investigate the response of to acute cold stress.

View Article and Find Full Text PDF

We previously reported that metformin, a widely prescribed antidiabetic drug, induces the accumulation of triglyceride (TG) together with the apoptotic death of H4IIE via AMP-activated protein kinase (AMPK) in hepatocellular carcinoma (HCC) cells. However, the effect of cytoplasmic fat accumulation on the growth of HCCs remains controversial. Herein, we investigated the effect of fatty acid synthase (FASN) inhibitors on the basal- or metformin-induced changes including the content of cytoplasmic TG and the viability of HCC cells.

View Article and Find Full Text PDF

Problem: A high-fat diet (HFD) predisposes animals to glucose intolerance, dyslipidemia and testicular oxidative stress, and impairs sperm production in rats. Quercetin is a flavonoid with antioxidant, anti-inflammatory, and lipolytic actions and is a potential supplement to combat the oxidative stress caused by HFD and its harmful effects on reproduction. This study evaluated the effects of quercetin supplementation at doses of 10 and 20 mg/day on reproductive parameters and testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose.

View Article and Find Full Text PDF

Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!