Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/20/43/430207 | DOI Listing |
J Mol Model
January 2025
Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.
Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.
View Article and Find Full Text PDFJ Occup Health
January 2025
Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498Japan.
With the explosive development of nanotechnology, engineered nanomaterials are currently being used in various industries, including food and medicine. Concern about the health effects of nanomaterials has been raised, and available research indicates that the relative surface area of nanomaterials seems to correlate with the severity of their toxicity. With regard to engineered nanomaterials, the scope of their acute and chronic toxicities and their mechanisms are not fully understood.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China.
Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine AA receptor (AAR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with AAR antagonists (AARi).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!