Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Posterior fossa syndrome is characterized by cerebellar dysfunction, oromotor/oculomotor apraxia, emotional lability and mutism in patients after infratentorial injury. The underlying neuroanatomical substrates of posterior fossa syndrome are unknown, but dentatothalamocortical tracts have been implicated. We used pre- and postoperative neuroimaging to investigate proximal dentatothalamocortical tract involvement in childhood embryonal brain tumour patients who developed posterior fossa syndrome following tumour resection. Diagnostic imaging from a cohort of 26 paediatric patients previously operated on for an embryonal brain tumour (13 patients prospectively diagnosed with posterior fossa syndrome, and 13 non-affected patients) were evaluated. Preoperative magnetic resonance imaging was used to define relevant tumour features, including two potentially predictive measures. Postoperative magnetic resonance and diffusion tensor imaging were used to characterize operative injury and tract-based differences in anisotropy of water diffusion. In patients who developed posterior fossa syndrome, initial tumour resided higher in the 4th ventricle (P = 0.035). Postoperative magnetic resonance signal abnormalities within the superior cerebellar peduncles and midbrain were observed more often in patients with posterior fossa syndrome (P = 0.030 and 0.003, respectively). The fractional anisotropy of water was lower in the bilateral superior cerebellar peduncles, in the bilateral fornices, white matter region proximate to the right angular gyrus (Tailerach coordinates 35, -71, 19) and white matter region proximate to the left superior frontal gyrus (Tailerach coordinates -24, 57, 20). Our findings suggest that multiple bilateral injuries to the proximal dentatothalamocortical pathways may predispose the development of posterior fossa syndrome, that functional disruption of the white matter bundles containing efferent axons within the superior cerebellar peduncles is a critical underlying pathophysiological component of posterior fossa syndrome, and that decreased fractional anisotropy in the fornices and cerebral cortex may be related to the abnormal neurobehavioural symptoms of posterior fossa syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781745 | PMC |
http://dx.doi.org/10.1093/brain/awp241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!