Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1.

Proc Natl Acad Sci U S A

Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.

Published: September 2009

The DExD/H-box RNA-dependent ATPase Dbp5 plays an essential role in the nuclear export of mRNA. Dbp5 localizes to the nuclear pore complex, where its ATPase activity is stimulated by Gle1 and its coactivator inositol hexakisphosphate. Here, we present the crystal structure of the C-terminal domain of Dbp5, refined to 1.8 A. The structure reveals a RecA-like fold that contains two defining characteristics not present in other structurally characterized DExD/H-box proteins: a C-terminal alpha-helix and a loop connecting beta5 and alpha4, both of which are composed of conserved and unique elements in the Dbp5 primary sequence. Using structure-guided mutagenesis, we have identified several charged surface residues that, when mutated, weaken the binding of Gle1 and inhibit the ability of Gle1 to stimulate Dbp5's ATPase activity. In vivo analysis of the same mutations reveals that those mutants displaying the weakest ATPase stimulation in vitro are also unable to support yeast growth. Analysis of the correlation between the in vitro and in vivo data indicates that a threshold level of Dbp5 ATPase activity is required for cellular mRNA export that is not met by the unstimulated enzyme, suggesting a possible mechanism by which Dbp5's activity can be modulated to regulate mRNA export.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752551PMC
http://dx.doi.org/10.1073/pnas.0902251106DOI Listing

Publication Analysis

Top Keywords

mrna export
12
atpase activity
12
dbp5
6
atpase
6
structure c-terminus
4
mrna
4
c-terminus mrna
4
export
4
export factor
4
factor dbp5
4

Similar Publications

Structures and mRNP remodeling mechanism of the TREX-2 complex.

Structure

January 2025

Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:

mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2).

View Article and Find Full Text PDF

Nrf2 Regulates Basal Glutathione Production in Astrocytes.

Int J Mol Sci

January 2025

Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.

Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Nuclear Tau accumulation in Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.

View Article and Find Full Text PDF

Novel p.Arg534del Mutation and MTHFR C667T Polymorphism in Fragile X Syndrome (FXS) With Autism Spectrum Phenotype: A Case Report.

Case Rep Genet

January 2025

Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.

Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!