A striking feature of the circadian clock is its flexible yet robust response to various environmental conditions. To analyze the biochemical processes underlying this flexible-yet-robust characteristic, we examined the effects of 1,260 pharmacologically active compounds in mouse and human clock cell lines. Compounds that markedly (>10 s.d.) lengthened the period in both cell lines, also lengthened it in central clock tissues and peripheral clock cells. Most compounds inhibited casein kinase Iepsilon (CKIepsilon) or CKIdelta phosphorylation of the PER2 protein. Manipulation of CKIepsilon/delta-dependent phosphorylation by these compounds lengthened the period of the mammalian clock from circadian (24 h) to circabidian (48 h), revealing its high sensitivity to chemical perturbation. The degradation rate of PER2, which is regulated by CKIepsilon/delta-dependent phosphorylation, was temperature-insensitive in living clock cells, yet sensitive to chemical perturbations. This temperature-insensitivity was preserved in the CKIepsilon/delta-dependent phosphorylation of a synthetic peptide in vitro. Thus, CKIepsilon/delta-dependent phosphorylation is likely a temperature-insensitive period-determining process in the mammalian circadian clock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736905PMC
http://dx.doi.org/10.1073/pnas.0908733106DOI Listing

Publication Analysis

Top Keywords

ckiepsilon/delta-dependent phosphorylation
20
phosphorylation temperature-insensitive
12
circadian clock
12
temperature-insensitive period-determining
8
period-determining process
8
process mammalian
8
mammalian circadian
8
clock
8
cell lines
8
lengthened period
8

Similar Publications

A striking feature of the circadian clock is its flexible yet robust response to various environmental conditions. To analyze the biochemical processes underlying this flexible-yet-robust characteristic, we examined the effects of 1,260 pharmacologically active compounds in mouse and human clock cell lines. Compounds that markedly (>10 s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!