Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study.

Crit Care

Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, Faculty of Medicine, University of Heidelberg, Mannheim, Germany, Theodor-Kutzer Ufer, Mannheim, 68165, Germany.

Published: March 2010

Introduction: To investigate the effects of positive end-expiratory pressure (PEEP) on respiratory function and hemodynamics in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) with normal intra-abdominal pressure (IAP < 12 mmHg) and with intra-abdominal hypertension (IAH, defined as IAP >or= 12 mmHg) during lung protective ventilation and a decremental PEEP, a prospective, observational clinical pilot study was performed.

Methods: Twenty patients with ALI/ARDS with normal IAP or IAH treated in the surgical intensive care unit in a university hospital were studied. The mean IAP in patients with IAH and normal IAP was 16 +/- 3 mmHg and 8 +/- 3 mmHg, respectively (P < 0.001). At different PEEP levels (5, 10, 15, 20 cmH2O) we measured respiratory mechanics, partitioned into its lung and chest wall components, alveolar recruitment, gas-exchange, hemodynamics, extravascular lung water index (EVLWI) and intrathoracic blood volume index (ITBVI).

Results: We found that ALI/ARDS patients with IAH, as compared to those with normal IAP, were characterized by: a) no differences in gas-exchange, respiratory mechanics, partitioned into its lung and chest wall components, as well as hemodynamics and EVLWI/ITBVI; b) decreased elastance of the respiratory system and the lung, but no differences in alveolar recruitment and oxygenation or hemodynamics, when PEEP was increased at 10 and 15cmH2O; c) at higher levels of PEEP, EVLWI was lower in ALI/ARDS patients with IAH as compared with those with normal IAP.

Conclusions: IAH, within the limits of IAP measured in the present study, does not affect interpretation of respiratory mechanics, alveolar recruitment and hemodynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784387PMC
http://dx.doi.org/10.1186/cc8118DOI Listing

Publication Analysis

Top Keywords

normal iap
12
patients iah
12
respiratory mechanics
12
alveolar recruitment
12
effects positive
8
positive end-expiratory
8
end-expiratory pressure
8
respiratory
8
respiratory function
8
function hemodynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!