A quantitative structure-activity relationship (QSAR) analysis was performed on a data set of 104 molecules showing N-type calcium channel blocking activity. Several types of descriptors, including electrotopological, structural, thermodynamics and ADMET, were used to derive a quantitative relationship between N-type calcium channel blocking activity and structural properties. The genetic algorithm-based genetic function approximation (GFA) method of variable selection was used to generate the 2D-QSAR model. The model was established on a training set of 83 molecules, and validated by a test set of 21 molecules. The model was developed using five information-rich descriptors--Atype_C_24, Atype_N_68, Rotlbonds, S_sssN, and ADME_Solubility--playing an important role in determining N-type calcium channel blocking activity. For the best QSAR model (model 4), the statistics were r (2) = 0.798; q (2) = 0.769; n = 83 for the training set. This model was further validated using the leave-one-out (LOO) cross-validation approach, Fischer statistics (F), Y-randomisation test, and predictions based on the test data set. The resulting descriptors produced by QSAR model 4 were used to identify physico-chemical features relevant to N-type calcium channel blocking activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-009-0591-1 | DOI Listing |
Eur J Orthod
December 2024
Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.
Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.
Mater Horiz
December 2024
Walter Schottky Institute, Technical University of Munich, 85748 Garching, Germany.
Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.
Transl Psychiatry
December 2024
Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
Cell Commun Signal
November 2024
Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!