Directed gene silencing with artificial microRNAs.

Methods Mol Biol

Institut de Biologie Moléculaire des Plantes (CNRS), Strasbourg, Cedex, France.

Published: January 2010

The characterization of gene function typically includes a detailed analysis of loss-of-function alleles. In model plants, such as Arabidopsis thaliana and rice, sequence-indexed insertion collections provide a large resource of potential null alleles that can often be easily accessed through convenient Web sites (e.g., http://signal.salk.edu ). They are, however, not available for nonmodel species, require stacking for knockout of redundant homologs, and do not easily allow for partial or regulated loss of gene function, which is particularly useful when null alleles are lethal. Transgene approaches that employ directed gene silencing can substitute for null alleles and also enable refined studies of gene function, e.g., by tissue-specific and inducible gene-silencing. This chapter describes the generation and application of artificial microRNAs (amiRNAs) as a gene silencing tool in a wide variety of different plant species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60327-005-2_6DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
gene function
12
null alleles
12
directed gene
8
artificial micrornas
8
gene
5
silencing artificial
4
micrornas characterization
4
characterization gene
4
function typically
4

Similar Publications

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.

View Article and Find Full Text PDF

NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming.

Cell Signal

January 2025

Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:

Article Synopsis
  • Pulmonary artery hypertension (PAH) exhibits a metabolic shift towards aerobic glycolysis, resembling cancer metabolism, and involves the role of NSD2, though its exact function is not fully understood.
  • Increased expression of FOLR1 in PAH tissues was linked to NSD2, and silencing either NSD2 or FOLR1 inhibited cell proliferation and the progression of PAH.
  • The study found that NSD2 influences the activity of FOLR1, affecting glycolytic gene expression and metabolic processes in pulmonary artery endothelial cells, suggesting a potential pathway for therapeutic intervention in PAH.
View Article and Find Full Text PDF

Clinical advances of mRNA vaccines for cancer immunotherapy.

Med

January 2025

Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response.

View Article and Find Full Text PDF

The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.

Plant Physiol Biochem

January 2025

Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!