Generation of formaldehyde by pharmaceutical excipients and its absorption by meglumine.

Chem Pharm Bull (Tokyo)

Formulation Research and Development Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka 553-0001, Japan.

Published: October 2009

Formaldehyde is a well-known air impurity. The possibility was investigated in this study that pharmaceutical excipients commonly used in oral solid dosage forms might also be sources of formaldehyde. The results showed that formaldehyde is generated by the excipients lactose, D-mannitol, microcrystalline cellulose, low-substituted hydroxypropylcellulose, magnesium stearate and light anhydrous silicic acid. Since the quality and safety of pharmaceutical products can be significantly affected by the presence of formaldehyde, various amines were then investigated for their ability to decrease levels of formaldehyde using an aqueous solution system. Of the four amines investigated, only meglumine proved capable of reducing formaldehyde levels. The reaction product between formaldehyde and meglumine was obtained by fractionation using the preparative HPLC system and the structure was clarified by (1)H-, (13)C-NMR, various types of two-dimensional NMR and mass spectroscopy. The reaction product was determined to be a compound with a 1,3-oxazinane skeleton and containing one more carbon than meglumine. It was presumed that formaldehyde reacted with the secondary amino group in meglumine to form the reaction product via an iminium salt intermediate by cyclization. As meglumine is permitted to be used as a pharmaceutical excipient in both oral and parenteral dosage forms by regulations worldwide, the addition of meglumine to pharmaceutical products can be expected to contribute to the stabilization of many drug substances.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.57.1096DOI Listing

Publication Analysis

Top Keywords

reaction product
12
pharmaceutical excipients
8
formaldehyde
8
dosage forms
8
pharmaceutical products
8
amines investigated
8
meglumine
7
pharmaceutical
5
generation formaldehyde
4
formaldehyde pharmaceutical
4

Similar Publications

Interfacial Engineering with a Conjugated Conductive Polymer for a Highly Reversible Zn Anode.

ACS Appl Mater Interfaces

January 2025

Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China.

For Zn metal batteries, the Zn anode faces several challenges, including Zn dendrites, hydrogen evolution, and corrosion. These issues are closely related to the Zn deposition process at the electrode/electrolyte interface. Herein, we propose interfacial engineering to protect the Zn anode and induce homogeneous deposition using conjugated cyclized polyacrylonitrile (cPAN) polymer nanofibers.

View Article and Find Full Text PDF

The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.

View Article and Find Full Text PDF

Enhancing Hydrogen Evolution Reaction through Coalescence-Induced Bubble Departure on Patterned Gold-Silicon Microstrip Surfaces.

ACS Appl Mater Interfaces

January 2025

Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States.

Hydrogen bubble adhesion to the electrode presents a major obstacle for green hydrogen generation via the hydrogen evolution reaction (HER) as it would induce undesired overpotential and undermine the reaction efficiency by reducing reaction area, increasing transport resistance, and creating an undesired ion concentration gradient. While electrodes with aerophobic/hydrophilic surfaces have been developed to facilitate bubble detachment, they primarily rely on micro- and nanostructured catalyst surfaces to enhance buoyance-induced bubble departure. Here, we demonstrate that introducing nonreactive yet more hydrophilic surfaces can promote coalescence-induced bubble departure, thereby significantly reducing the transport overpotential and improving HER performance.

View Article and Find Full Text PDF

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!