Generation of amylosucrase variants that terminate catalysis of acceptor elongation at the di- or trisaccharide stage.

Appl Environ Microbiol

Department of Chemical Biology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.

Published: December 2009

An amylosucrase gene was subjected to high-rate segmental random mutagenesis, which was directed toward a segment encoding amino acids that influence the interaction with substrate molecules in subsites -1 to +3. A screen was used to identify enzyme variants with compromised glucan chain elongation. With an average mutation rate of about one mutation per targeted codon, a considerable fraction (82%) of the clones that retained catalytic activity were deficient in this trait. A detailed characterization of selected variants revealed that elongation terminated when chains reached lengths of only two or three glucose moieties. Sequencing showed that the amylosucrase derivatives had an average of no more than two amino acid substitutions and suggested that predominantly exchanges of Asp394 or Gly396 were crucial for the novel properties. Structural models of the variants indicated that steric interference between the amino acids introduced at these sites and the growing oligosaccharide chain are mainly responsible for the limitation of glucosyl transfers. The variants generated may serve as biocatalysts for limited addition of glucose moieties to acceptor molecules, using sucrose as a readily available donor substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786406PMC
http://dx.doi.org/10.1128/AEM.01194-09DOI Listing

Publication Analysis

Top Keywords

amino acids
8
glucose moieties
8
variants
5
generation amylosucrase
4
amylosucrase variants
4
variants terminate
4
terminate catalysis
4
catalysis acceptor
4
acceptor elongation
4
elongation di-
4

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

Can We Maintain Muscle Mass on a Plant-Based Diet?

Curr Nutr Rep

January 2025

Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.

Purpose Of Review: This review aims to determine whether muscle mass and function can be effectively maintained without relying on animal-based protein sources. We evaluate the quality, digestibility, and essential amino acid profiles of plant-based proteins to understand their potential in preventing and managing sarcopenia.

Recent Finding: Recent studies indicate that while animal-based proteins have traditionally been considered the gold standard for supporting muscle protein synthesis, certain plant-based protein blends, fortified with leucine or other essential amino acids, can produce comparable anabolic responses.

View Article and Find Full Text PDF

Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.

View Article and Find Full Text PDF

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!