In-source fragmentation technique for the production of thermalized ions.

J Am Soc Mass Spectrom

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.

Published: December 2009

Our electrospray ionization-ion funnel-rf hexapole (ESI-IF-6P) source is designed to produce ions for threshold collision-induced dissociation (TCID) studies in a guided ion beam mass spectrometer. This ion source forms an initial distribution of Ca2+(H2O)x ions where x is 6-9. A new in-source fragmentation technique within the hexapole ion guide of the source is described, which is easy to implement and of modest machining and electrical costs, and is able to generate smaller Ca2+(H2O)x complexes, where x = 2-5. Fragmentation is achieved by biasing an assembly of six 0.25 in. long electrodes that are inserted between the hexapole rods. The assembly is positioned in the high-pressure region of the source such that newly formed Ca2+(H2O)x ions undergo enough collisions to become thermalized, as verified by TCID studies. From the initial distribution of ions, fragmentation proceeds along the lowest energy pathway, which corresponds to sequential water loss for most complexes. However, the Ca2+(H2O) complex cannot be formed using this method because charge separation into CaOH+ and H3O+ becomes the lowest energy pathway from the Ca2+(H2O)2 complex. Therefore, this fragmentation technique can be used to identify the critical size complex for M2+(H2O)x systems, which we define as the complex size (x) at which charge separation becomes a lower energy pathway compared with simple ligand loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2009.08.024DOI Listing

Publication Analysis

Top Keywords

fragmentation technique
12
energy pathway
12
in-source fragmentation
8
tcid studies
8
initial distribution
8
ca2+h2ox ions
8
lowest energy
8
charge separation
8
ions
5
technique production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!