L-allylglycine dissociates the neural substrates of fear in the periaqueductal gray of rats.

Brain Res Bull

Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.

Published: March 2010

The dorsal (dPAG) and ventral (vPAG) regions of the periaqueductal gray are well known to contain the neural substrates of fear and anxiety. Chemical or electrical stimulation of the dPAG induces freezing, followed by a robust behavioral reaction that has been considered an animal model of panic attack. In contrast, the vPAG is part of a neural system, in which immobility is the usual response to its stimulation. The defense reaction induced by the stimulation of either region is accompanied by antinociception. Although GABAergic mechanisms are known to exert tonic inhibitory control on the neural substrates of fear in the dPAG, the role of these mechanisms in the vPAG is still unclear. The present study examined defensive behaviors and antinociception induced by microinjections of an inhibitor of gamma-aminobutyric acid synthesis, L-allylglycine (l-AG; 1, 3, and 5 microg/0.2 microl), into either the dPAG or vPAG of rats subjected to the open field and tail-flick tests. Passive or tense immobility was the predominant behavior after L-AG (1 or 3 microg) microinjection into the vPAG and dPAG, respectively, which was replaced with intense hyperactivity, including jumps or rearings, after injections of a higher dose (5 microg/0.2 microl) into the dPAG or vPAG. Moreover, whereas intra-dPAG injection of 3 microg L-AG produced intense antinociception, only weak antinociception was induced by intra-vPAG injections of 5 microg L-AG. These findings suggest that GABA mechanisms are involved in the mediation of antinociception and behavioral inhibition to aversive stimulation of the vPAG and exert powerful control over the neural substrates of fear in the dPAG to prevent a full-blown defense reaction possibly associated with panic disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2009.09.016DOI Listing

Publication Analysis

Top Keywords

neural substrates
16
substrates fear
16
periaqueductal gray
8
defense reaction
8
control neural
8
fear dpag
8
antinociception induced
8
microg/02 microl
8
microl dpag
8
dpag vpag
8

Similar Publications

Nrf2 Regulates Basal Glutathione Production in Astrocytes.

Int J Mol Sci

January 2025

Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.

Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.

View Article and Find Full Text PDF

Word problems are essential for math learning and education, bridging numerical knowledge with real-world applications. Despite their importance, the neural mechanisms underlying word problem solving, especially in children, remain poorly understood. Here, we examine children's cognitive and brain response profiles for arithmetic word problems (AWPs), which involve one-step mathematical operations, and compare them with nonarithmetic word problems (NWPs), structured as parallel narratives without numerical operations.

View Article and Find Full Text PDF

Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression.

View Article and Find Full Text PDF

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Heterogeneous and higher-order cortical connectivity undergirds efficient, robust, and reliable neural codes.

iScience

January 2025

Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 6 Geneva, Switzerland.

We hypothesized that the heterogeneous architecture of biological neural networks provides a substrate to regulate the well-known tradeoff between robustness and efficiency, thereby allowing different subpopulations of the same network to optimize for different objectives. To distinguish between subpopulations, we developed a metric based on the mathematical theory of simplicial complexes that captures the complexity of their connectivity by contrasting its higher-order structure to a random control and confirmed its relevance in several openly available connectomes. Using a biologically detailed cortical model and an electron microscopic dataset, we showed that subpopulations with low simplicial complexity exhibit efficient activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!