Obesity has emerged as a global health problem with more than 1.1 billion adults to be classified as overweight or obese, and is associated with type 2 diabetes, cardiovascular disease, and several cancers. Since obesity is characterized by an increased size and/or number of adipocytes, elucidating the molecular events governing adipogenesis is of utmost importance. Recent findings indicate that microRNAs (miRNAs) - small non-protein-coding RNAs that function as post-transcriptional gene regulators - are involved in the regulatory network of adipogenesis. Whereas only a single human miRNA is known so far to be functional in adipogenesis as pro-adipogenic, several mouse miRNAs have been identified very recently as adipogenic regulators, thereby stimulating demand for studying the functional role of miRNAs during adipogenesis in human. Here, we demonstrate that miR-27b abundance decreased during adipogenesis of human multipotent adipose-derived stem (hMADS) cells. Overexpression of miR-27b blunted induction of PPARgamma and C/EBPalpha, two key regulators of adipogenesis, during early onset of adipogenesis and repressed adipogenic marker gene expression and triglyceride accumulation at late stages. PPARgamma has a predicted and highly conserved binding site in its 3'UTR and was indeed confirmed to be a direct target of miR-27b. Thus, these results suggest that the anti-adipogenic effect of miR-27b in hMADS cells is due, at least in part, to suppression of PPARgamma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2009.09.098 | DOI Listing |
Int J Mol Sci
January 2025
Division of Hand Surgery, Plastic Surgery and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany.
Aspirin (ASA) is one of the most used medications worldwide and has shown various effects on cellular processes, including stem cell differentiation. However, the effect of ASA on adipogenesis of adipose tissue-derived stem cells (ASCs) remains largely unknown. Considering the potential application of ASCs in regenerative medicine and cell-based therapies, this study investigates the effects of ASA on adipogenic differentiation in human ASCs.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.
View Article and Find Full Text PDFBiomolecules
January 2025
Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA.
We previously reported that mediated the improvement in body composition in testosterone (T)-treated hypogonadal men by shifting adipogenesis to myogenesis. Previous preclinical studies suggest that regulates , an important osteoblastic transcription factor, expression and activity. However, the changes in , and other genes/proteins involved in osteoblastogenesis with T therapy in hypogonadal men are unexplored.
View Article and Find Full Text PDFBiomedicines
December 2024
Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany.
: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!