Nonionic surfactants, such as Triton X-100 and Tween-20, were shown in this study to improve the electrocatalytic activity of screen-printed carbon paste electrodes (SPCE). The electrochemical response of SPCE to hydrogen peroxide increased 8-10-fold with the modification of nonionic surfactants. In addition, the glucose biosensors fabricated from nonionic surfactant-modified SPCE exhibited 6.4-8.6-fold higher response to glucose than that fabricated from unmodified SPCE. A concentration effect is proposed for nonionic surfactant to bring neutral reactants to the surface of electrode. Moreover, nonionic surfactant-modified SPCE exhibits a capability of repetitive usage and good reproducibility (R.S.D.<5%) in the measurement of H(2)O(2). Interestingly, the nonionic surfactant-modified SPCE exhibited an opposite effect to ascorbic acid, a common electroactive agent, which causes interference during clinical diagnosis. The differential responses of nonionic surfactant-modified SPCE to H(2)O(2) and ascorbic acid suggest its potential in the development of biosensors for clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2009.08.035 | DOI Listing |
Polymers (Basel)
January 2025
Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.
View Article and Find Full Text PDFMolecules
January 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA.
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
Pesticide residues on fruits pose a global food safety concern, emphasizing the need for effective and practical removal strategies to ensure safe consumption. This study investigates the efficacy of household ingredients (corn starch, all-purpose flour, rice flour and baking soda) and four commercial fresh produce wash products in eliminating a model pesticide thiabendazole with and without a model non-ionic surfactant Alligare 90 from postharvest fruits. Surface-enhanced Raman spectroscopy (SERS) was employed for the rapid, in situ quantification of residue removal on apple surfaces.
View Article and Find Full Text PDFToxics
January 2025
Department of Chemical Engineering, Faculty of Sciences, University of Granada, Campus Fuente Nueva s/n, 18071 Granada, Spain.
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!