Virion-associated viral fibroblast growth factor stimulates cell motility.

Virology

Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA.

Published: December 2009

The Autographa californica M nucleopolyhedrovirus (AcMNPV) viral fibroblast growth factor (vFGF) has functional parallels to cellular FGFs. Deletion of the AcMNPV vfgf has no obvious phenotype in cell culture but delays the time of insect death. Here, we determined vFGF production during virus infection. vFGF was detected at 24 hours post infection and through the remainder of the infection cycle. Since vFGF is thought to be a secreted membrane-binding protein and virions acquire an envelope derived from the cell membrane, we examined virions for the presence of vFGF using microscopy, flow cytometry, and affinity chromatography. We found that vFGF associated with virions. Furthermore, budded virus carrying vFGF had more affinity to heparin than vFGF-deficient budded virus, consistent with the affinity of FGFs for heparan sulfate proteoglycans. Although the function of virion-associated vFGF is not clear, we found that virion-associated vFGF stimulated cell motility and affected virus attachment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783332PMC
http://dx.doi.org/10.1016/j.virol.2009.09.011DOI Listing

Publication Analysis

Top Keywords

vfgf
10
viral fibroblast
8
fibroblast growth
8
growth factor
8
cell motility
8
budded virus
8
virion-associated vfgf
8
virion-associated viral
4
factor stimulates
4
cell
4

Similar Publications

Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, and angioinvasion, the invasion of blood vessels by cancer cells, is a crucial pathological feature associated with disease progression and poor prognosis. Thus, a comprehensive search of scientific databases was conducted to identify relevant studies investigating angioinvasion markers in PTC. The selected studies were reviewed and analyzed to assess the clinical significance and potential utility of these markers in predicting angioinvasion and guiding treatment decisions.

View Article and Find Full Text PDF

During her first year of junior high school, a 12-year-old Japanese girl with Down syndrome experienced dizziness, gait disruption, paroxysmal weakness in her hands, and sluggish speaking. Regular blood tests and a brain MRI revealed no abnormalities, and she was tentatively diagnosed with adjustment disorder. Nine months later, the patient experienced a subacute sickness of chest pain, nausea, sleep problem with night terrors, and delusion of observation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of neocryptotanshinone (NEO) on protecting the brain from damage caused by cerebral ischemia, using various experimental methods.
  • NEO was found to inhibit M1 polarization in mouse microglial cells and promote blood vessel formation in endothelial cells, facilitating recovery from hypoxia.
  • Overall, NEO demonstrated significant protective effects in mouse models of cerebral ischemia, improving neurological functions and reducing inflammation in the brain.
View Article and Find Full Text PDF

Interleukin-6 (IL-6)/soluble IL-6 receptor (sIL-6R) promotes peritoneal angiogenesis by stimulating SP4-mediated vascular endothelial growth factor (VEGF) production in peritoneal dialysis (PD). Moreover, histone methyltransferase enhancer of zeste homologue 2 (EZH2) is involved in IL-6/sIL-6R signalling via the acceleration of vascular endothelial growth factor (VEGF)-induced angiogenesis. However, the molecular mechanism underlying how EZH2 epigenetically activates VFGF expression in IL-6/sIL-6R signalling during PD is still unclear.

View Article and Find Full Text PDF

Background: Maintaining the stability and maturation of blood vessels is of paramount importance for the vessels to carry out their physiological function. Smooth muscle cells (SMCs), pericytes, and mesenchymal stem cells (MSCs) are involved in the maturation process of the newly formed vessels. The aim of this study was to investigate whether transforming growth factor beta 1 (TGF-β1) treatment could enhance pericyte-like properties of dental pulp stem cells (DPSCs) and how TGF-β1-treated DPSCs for 7 days (T-DPSCs) stabilize the newly formed blood vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!