[Hyperspectral imagery denoising method based on wavelets].

Guang Pu Xue Yu Guang Pu Fen Xi

College of Sciences, National University of Defense and Technology, Changsha 410073, China.

Published: July 2009

To take advantage of the intrinsic characteristic of hyperspectral imageries, a hyperspectral imagery denoising method based on wavelet transform is proposed in the present paper. At first, two dimensional wavelet transform is performed on hyperspectral images band by band to capture their profiles. Due to the significant spectral correlation between adjacent bands, their high frequency wavelet coefficients are similar as well. Then, according to the wavelength relationship among the bands, which contain noise with different variances, new high frequency wavelet coefficients of seriously noisy bands are computed by the sum of weighted high frequency wavelet coefficients of bands, which contain low variance noise, and their profiles destroyed by noise are recovered in this way. Finally, the denoised images are reconstructed through inverse wavelet transform. The proposed method runs fast and can remove the noise efficiently. It was tested on airborne visible/infrared imaging spectrometer data (AVIRIS) cubes. Experimental results show that the signal-to-noise-ratio (SNR) of the reconstructed images in our method is 3.8-10.6 db higher than the that of the reconstructed images in the classical image denoising method, BayesShrink, and our method saves more than 50% computing time than BayesShrink method.

Download full-text PDF

Source

Publication Analysis

Top Keywords

denoising method
12
wavelet transform
12
high frequency
12
frequency wavelet
12
wavelet coefficients
12
imagery denoising
8
method based
8
transform proposed
8
reconstructed images
8
bayesshrink method
8

Similar Publications

The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.

View Article and Find Full Text PDF

Descart: a method for detecting spatial chromatin accessibility patterns with inter-cellular correlations.

Genome Biol

December 2024

Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.

Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations.

View Article and Find Full Text PDF

Purpose: This study aims to develop a assessment system for evaluating shoulder joint muscle strength in patients with varying degrees of upper limb injuries post-stroke, using surface electromyographic (sEMG) signals and joint motion data.

Methods: The assessment system includes modules for acquiring muscle electromyography (EMG) signals and joint motion data. The EMG signals from the anterior, middle, and posterior deltoid muscles were collected, filtered, and denoised to extract time-domain features.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

RAIN: Reconstructed-aware in-context enhancement with graph denoising for session-based recommendation.

Neural Netw

December 2024

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.

Session-based recommendation aims to recommend the next item based on short-term interactions. Traditional session-based recommendation methods assume that all interacted items are closely related to the user's interests. However, noise (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!