The main motivation of this study is to establish an ambulatory cardio-respiratory analysis system for the monitoring and evaluation of exercise and regular daily physical activity. We explored the estimation of oxygen uptake by using noninvasive portable sensors. These sensors are easy to use but may suffer from malfunctions under free living environments. A promising solution is to combine sensors with different measuring mechanisms to improve both reliability and accuracy of the estimation results. For this purpose, we selected a wireless heart rate sensor and a tri-axial accelerometer to form a complementary sensor platform. We analyzed the relationship between oxygen uptake measured by gas analysis and data collected from the simple portable sensors using multivariable nonlinear modeling approaches. It was observed that the resulting nonlinear multivariable model could not only achieve a better estimate compared with single input single output models, but also had greater potential to improve reliability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-009-0534-0DOI Listing

Publication Analysis

Top Keywords

oxygen uptake
12
noninvasive portable
8
portable sensors
8
improve reliability
8
transient steady
4
steady state
4
state estimation
4
estimation human
4
human oxygen
4
uptake based
4

Similar Publications

Alteration of Lipid Metabolism in Hypoxic Cancer Cells.

Chem Biomed Imaging

January 2025

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.

Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions.

View Article and Find Full Text PDF

SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters.

Nat Commun

January 2025

College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.

Nicotinamide (NAM), a main precursor of NAD+, is essential for cellular fuel respiration, energy production, and other cellular processes. Transporters for other precursors of NAD+ such as nicotinic acid and nicotinamide mononucleotide (NMN) have been identified, but the cellular transporter of nicotinamide has not been elucidated. Here, we demonstrate that equilibrative nucleoside transporter 1 and 2 (ENT1 and 2, encoded by SLC29A1 and 2) drive cellular nicotinamide uptake and establish nicotinamide metabolism homeostasis.

View Article and Find Full Text PDF

Objectives: Oral and periodontal health have been linked to systemic health, cardiovascular disease and inflammation markers. Physical fitness has been linked to increased inflammatory response, but only few studies have investigated the association between oral health with physical activity. The aim of this study was to evaluate the association between oral and periodontal health status and physical fitness in British law enforcement workers.

View Article and Find Full Text PDF

Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!