Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.17.001394DOI Listing

Publication Analysis

Top Keywords

adiabatic femtosecond
4
femtosecond soliton
4
soliton active
4
active nonlinear
4
nonlinear directional
4
directional coupler
4
adiabatic
1
soliton
1
active
1
nonlinear
1

Similar Publications

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

We revisit the naked transition metal cation (Ti) and methanol reaction and go beyond the standard Landau-Zener (LZ) picture when modeling the intersystem crossing (ISC) rate between the lowest doublet and quartet states. We use both (i) unconstrained Born-Oppenheimer molecular dynamics (BOMD) calculations with an approximate two-state method to estimate population transfer between spin diabats and (ii) constrained dynamics to explore energetically accessible portions of the - 1 crossing seam, where is the total number of internal degrees of freedom. Whereas previous LZ calculations (that necessarily relied on the Condon approximation to be valid) fell short and predicted much slower crossing probabilities than shown in experiment, we show that ISC can occur rapidly because the spin-orbit coupling (SOC) between the doublet and quartet surfaces can vary by 2 orders of magnitude (depending on where in the seam the crossing occurs during dynamics) and the crossing region is revisited multiple times during a dynamics run of a few hundred femtoseconds.

View Article and Find Full Text PDF

Strong-field effects in the photo-induced dissociation of the hydrogen molecule on a silver nanoshell.

Chem Sci

October 2024

Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) Paseo Manuel de Lardizabal 5 Donostia-San Sebastián 20018 Spain

Plasmonic catalysis is a rapidly growing field of research, both from experimental and computational perspectives. Experimental observations demonstrate an enhanced dissociation rate for molecules in the presence of plasmonic nanoparticles under low-intensity visible light. The hot-carrier transfer from the nanoparticle to the molecule is often claimed as the mechanism for dissociation.

View Article and Find Full Text PDF

Deep eutectic electrolytes (DEEs) show promise for future electrochemical systems due to their adjustable buffer capacities. This study utilizes machine learning algorithms to analyse the carbon dioxide reduction reaction (CORR) in DEEs with a buffer capacity of approximately 10.21 mol/pH.

View Article and Find Full Text PDF

Photoelectron spectroscopy of deprotonated benzonitrile.

J Chem Phys

September 2024

School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom.

The recent discovery of cyano-substituted aromatic and two-ring polycyclic aromatic hydrocarbon molecules in Taurus Molecular Cloud-1 has prompted questions on how the electronic structure and excited-state dynamics of these molecules are linked with their existence and abundance. Here, we report a photodetachment and frequency- and angle-resolved photoelectron spectroscopy study of jet-cooled para-deprotonated benzonitrile (p-[Bzn-H]-). The adiabatic detachment energy was determined as 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!