Gastrointestinal physiology and digestive disorders in sleep.

Curr Opin Pulm Med

Division of Sleep Medicine, Department of Neurology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.

Published: November 2009

Purpose Of Review: The dynamic interplay of the digestive system and sleep is an excellent example of brain-body interaction. New advances in measuring techniques provide an opportunity to evaluate physiology that is dependent upon the sleep/wake state or circadian rhythm and potentially differentiate between normal and pathological conditions.

Recent Findings: Sleep-related changes in gastrointestinal physiology create vulnerabilities to digestive issues such as reflux, whereas disorders such as duodenal ulcers raise the importance of circadian variations in digestive system function. Advances in the area of normal sleep physiology have furthered our understanding of the underlying cause of irritable bowel syndrome, and the mechanisms by which sleep disruption may aggravate inflammatory bowel disease. Additionally, important early work has shown that the treatment of digestive disorders such as reflux can improve sleep quality just as the improvement in sleep may aid in the treatment of digestive disorders.

Summary: For the clinician, these forward steps in our knowledge mark the start of an era in which understanding the effects of the sleep/wake state and circadian rhythms on gastrointestinal physiology promise to yield novel diagnostic and therapeutic opportunities.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCP.0b013e3283318539DOI Listing

Publication Analysis

Top Keywords

gastrointestinal physiology
12
digestive disorders
8
digestive system
8
sleep/wake state
8
state circadian
8
treatment digestive
8
digestive
6
sleep
6
physiology digestive
4
disorders sleep
4

Similar Publications

The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host.

View Article and Find Full Text PDF

Aging and sex differences in salt sensitivity of blood pressure.

Clin Sci (Lond)

January 2025

Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, U.S.A.

Salt sensitivity of blood pressure (SSBP) is a complex physiological trait characterized by changes in blood pressure in response to dietary salt intake. Aging introduces an additional layer of complexity to the pathophysiology of SSBP, with mitochondrial dysfunction, epigenetic modifications, and alterations in gut microbiota emerging as critical factors. Despite advancements in understanding these mechanisms, the processes driving increased salt sensitivity with age and their differential impacts across sexes remain unclear.

View Article and Find Full Text PDF

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.

View Article and Find Full Text PDF

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

Introduction: Antibiotic overuse is driving a global rise in antibiotic resistance, highlighting the need for robust antimicrobial stewardship (AMS) initiatives to improve prescription practices. While antimicrobials are essential for treating sepsis and preventing surgical site infections (SSIs), they can inadvertently disrupt the gut microbiota, leading to postoperative complications. Treatment methods vary widely across nations due to differences in drug choice, dosage, and therapy duration, affecting antibiotic resistance rates, which can reach up to 51% in some countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!