AI Article Synopsis

  • After a brain injury, astrocytes change and express the protein vimentin, with previous research indicating that estradiol can reduce this reactive change.
  • *This study aimed to see if the selective estrogen receptor modulators raloxifene and tamoxifen have similar effects on astrocytes as estradiol, considering factors like aging and timing of hormone therapy post-ovariectomy.
  • *Results showed that reactive astrocytes increased with age and length of hormone depletion, but all groups benefited from the estrogenic treatments, highlighting their potential for managing astrogliosis across different age groups and hormone levels.

Article Abstract

After brain injury, astrocytes acquire a reactive phenotype characterized by a series of morphological and molecular modifications, including the expression of the cytoskeletal protein vimentin. Previous studies have shown that estradiol down-regulates reactive astrogliosis. In this study we assessed whether raloxifene and tamoxifen, two selective estrogen receptor modulators, have effects similar to estradiol in astrocytes. We also assessed whether aging and the timing of estrogenic therapy after ovariectomy influence the action of the estrogenic compounds. Four groups of animals were studied: 1) young rats, ovariectomized at 2 months of age; 2) middle-aged rats, ovariectomized at 8 months of age; 3) aged rats, ovariectomized at 18 months of age; and 4) aged rats, ovariectomized at 2 months and sham operated at 18 months of age. Fifteen days after ovariectomy or sham surgery, animals received a stab wound brain injury and the treatment with the estrogenic compounds. The number of vimentin-immunoreactive astrocytes after injury was significantly higher in the hippocampus of aged rats after a long-term ovariectomy compared with aged animals after a short-term ovariectomy and middle-aged rats. In addition, reactive astrocytes were more numerous in the two groups of aged animals than in young animals. Despite these differences, the estrogenic compounds reduced reactive astrogliosis in all animal groups. These findings indicate that estradiol, raloxifene, and tamoxifen are potential candidates for the control of astrogliosis in young and older individuals and after a prolonged depletion of ovarian hormones.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2009-0352DOI Listing

Publication Analysis

Top Keywords

rats ovariectomized
16
ovariectomized months
16
months age
16
reactive astrogliosis
12
estrogenic compounds
12
aged rats
12
selective estrogen
8
estrogen receptor
8
receptor modulators
8
prolonged depletion
8

Similar Publications

Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.

View Article and Find Full Text PDF

Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats.

Int J Mol Sci

December 2024

Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil.

Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD.

View Article and Find Full Text PDF

Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.

View Article and Find Full Text PDF

Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities.

Chem Pharm Bull (Tokyo)

January 2025

Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.

Article Synopsis
  • A-ring modifications in 1α,25-dihydroxyvitamin D enhance its binding to the vitamin D receptor (VDR) and increase its stability in cells by resisting metabolism, leading to longer-lasting effects.
  • Various modified A-ring precursors synthesized from d-glucose showed specific biological activities with minimal calcemic side effects, including MART-10's potent antitumor effects in cancer models and AH-1's superior bone-forming properties in osteoporosis models compared to natural vitamin D.
  • Ongoing research includes developing a library of fluorinated vitamin D analogs with potential anti-inflammatory effects and therapeutic applications for conditions like psoriasis, alongside the creation of the VDR-silent analog KK-052, which selectively inhibits SREBP/SC
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!