Chemotherapy is one of the principal modes of treatment for cancer patients. Clinically, many tumors present a satisfactory response when they are first exposed to the chemotherapeutic drugs. However, drug resistance occurs sooner or later in these tumors, and the majority of the patients develop progressive disease. The mechanisms of treatment failure of chemotherapeutic drugs have been well studied. Via a unique protection system, i.e. multidrug resistance (MDR), the cancer cells can escape the toxic effect of most commonly used cancer drugs in spite of their different chemical structures and different mechanisms of intracellular activity. There are two classes of transporter proteins at the cellular surface which are responsible for MDR in tumors. One is the adenosine triphosphate-binding cassette transporter superfamily, which is an energy-requiring efflux pump with the function of extruding toxic chemotherapeutic drugs from the cancer cells. The other is the solute carrier transporter superfamily, which mediates the cellular uptake of anticancer drugs, and drug resistance may result from decreased activity of these transporters. Although transporters of MDR are responsible for the tumor resistance to many chemotherapeutic drugs currently used in cancer therapy, the mechanisms of resistance to platinum-based antitumor agents are through different pathways. In this article, the mechanisms of MDR transporters mediating resistance to the commonly used chemotherapeutic drugs and to platinum-based agents are reviewed. Finally, with the finding of cancer stem cells in more and more solid tumors, it is recognized that the cancer stem cell is spared along with its normal tissue stem cell counterparts with very subtle differences. One characteristic of the normal tissue stem cell is the self-protection ability through innate MDR transporters. Therefore, the essential self-protection property is also present in the cancer stem cells. The quiescent tumor stem cell with constitutive MDR is the main barrier to therapy. Successful cancer therapy will depend on the ability to discern the subtle differences between the tumor and normal stem cells so that approaches can be developed to eliminate the tumor stem cells without excessive toxicity to normal stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1028-4559(09)60296-5 | DOI Listing |
Pharmaceutics
January 2025
Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Instituto de Química, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil.
Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal.
Background: Chemoresistance is a major obstacle in high-grade serous carcinoma (HGSC) treatment. Although many patients initially respond to chemotherapy, the majority of them relapse due to Carboplatin and Paclitaxel resistance. Drug repurposing has surfaced as a potentially effective strategy that works synergically with standard chemotherapy to bypass chemoresistance.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA.
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!