Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite.

J Hazard Mater

Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA.

Published: February 2010

Removal of hexavalent chromium (Cr(VI)) from wastewater typically involves reduction of Cr(VI) to insoluble Cr(III) using zerovalent iron (Fe(0)) or ferrous iron (Fe(II)). This study investigates the effectiveness of Fe(II)-treated faujasite (zeolite Fe(II)-Y) for reduction of Cr(VI) and immobilization (adsorption/co-precipitation) of the Cr(III) reaction product. The Fe(II)-faujasite material effectively removed high concentrations of dissolved Cr(VI) from aqueous solution resulting in Cr solid loadings as high as 0.30 mmol Cr per gram Fe(II)-faujasite or approximately 1.5% Cr (w:w). Results of Cr K-edge X-ray absorption near edge spectroscopy (XANES) confirmed that the oxidation state of Cr in Cr(VI)-treated Fe(II)-faujasite was Cr(III). The local atomic structure of Cr was investigated by extended X-ray absorption fine structure (EXAFS) spectroscopy and the structure of Cr in the product was described by a Cr-O first shell of six O atoms at 1.98(+/-0.02)A plus a second atomic shell of metal (Cr, Fe) at 3.13(+/-0.02)A. The EXAFS results, combined with SEM imaging and X-ray diffraction analyses, suggested that the product of the reaction of Cr(VI) with Fe(II)-faujasite is primarily a poorly order Cr(x)Fe(1-x)(OH)(3) mixed phase similar to previous investigations of the reaction of Cr(VI) with Fe(0) and not solely Cr(III) bound directly to zeolite cation exchange sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.09.032DOI Listing

Publication Analysis

Top Keywords

reduction crvi
8
x-ray absorption
8
reaction crvi
8
crvi
6
reduction immobilization
4
immobilization chromiumvi
4
chromiumvi ironii-treated
4
ironii-treated faujasite
4
faujasite removal
4
removal hexavalent
4

Similar Publications

Polyaniline-ZnTi-LDH heterostructure with d-π coupling for enhanced photocatalysis of pollutant removal.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China. Electronic address:

Heterointerface engineering is an effective strategy to design and construct high-performance photocatalysts. Herein, polyaniline (PANI) nanoparticles and ZnTi layered double hydroxide (ZnTi-LDH) nanosheets were integrated to form organic-inorganic heterostructure (PANI/LDH) via d-π electronic coupling using in-situ polymerization for photocatalytic oxidation/reduction towards tetracycline (TC) and Cr(VI). The photocatalytic activity was closely related to feed amount of aniline (Ani) in the polymerization process, which the abundant PANI nanoparticles were evenly distributed on the surface of ZnTi-LDH nanosheets at the proper Ani feed amount, and thus reinforced d-π electronic coupling at the organic-inorganic interfaces more efficiently.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Synchronous Photocatalytic Redox Conversion of Chromium(VI) and Arsenic(III) by Bimetallic Fe/Ti Metal-Organic Frameworks.

Inorg Chem

January 2025

School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.

In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.

View Article and Find Full Text PDF

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!