The trinuclear oxo bridged manganese cluster, [Mn(IV)(3)O(4)(terpy)(terpyO(2))(2)(H(2)O)](S(2)O(8))(2) (5) (terpy = 2,2':2'',6'-terpyridine and terpyO(2) = 2,2':2'',6'-terpyridine 1,1''-dioxide), was isolated in an acidic aqueous medium from the reaction of MnSO(4), terpy, and oxone as chemical oxidant. The terpyO(2) ligands were generated in situ during the synthesis by partial oxidation of terpy. The complex crystallizes in the monoclinic space group P21/n with a = 14.251(5) A, b = 15.245(5) A, c = 24.672(5) A, alpha = 90.000(5) degrees, beta = 92.045(5) degrees, gamma = 90.000(5) degrees, and Z = 4. The triangular {Mn(IV)(3)O(4)}(4+) core observed in this complex is built up of a basal Mn(mu-O)(2)Mn unit where each Mn ion is linked to an apical Mn ion via mono(mu-O) bridges. The facial coordination of the two tridentate terpyO(2) ligands to the Mn(mu-O)(2)Mn unit allows the formation of the triangular core. 5 is also the first structurally characterized Mn complex with polypyridinyl N-oxide ligands. The variable-temperature magnetic susceptibility data for this complex, in the range of 10-300 K, are consistent with an S = 1/2 ground state and were fit using the spin Hamiltonian H(eff) with S(1) = S(2) = S(3) = 3/2, J(a) = -37 (+/-0.5) and J(b) = -53 (+/-1) cm(-1), where J(a) and J(b) are exchange constants through the mono-mu-oxo and the di-mu-oxo bridges, respectively. The doublet ground spin state of 5 is confirmed by EPR spectroscopic measurements. Density functional theory (DFT) calculations based on the broken symmetry approach reproduce the magnetic properties of 5 very well (calculated values: J(a) = -39.4 and J(b) = -55.9 cm(-1)), thus confirming the capability of this quantum chemical method for predicting the magnetic behavior of clusters involving more than two metal ions. The nature of the ground spin state of the magnetic {Mn(IV)(3)O(4)}(4+) core and the role of ancillary ligands on the magnitude of J are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic901409y | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen 5007, Norway.
The polar bear () is the only Arctic land mammal that dives into water to hunt. Despite thermal insulation provided by blubber and fur layers and low Arctic temperatures, their fur is typically observed to be free of ice. This study investigates the anti-icing properties of polar bear fur.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States.
The kinetics of electronically inelastic quenching of O(Δ) and O(Σ) by collisions with O(P) have been investigated using mixed quantum-classical trajectories governed by adiabatic potential energy surfaces and state couplings generated from a recently developed diabatic potential energy matrix (DPEM) for the 14 lowest-energy A' states of O. Using the coherent switching with decay of mixing (CSDM) method, dynamics calculations were performed both with 14 coupled electronic states and with 8 coupled electronical states, and similar results were obtained. The calculated thermal quenching rate coefficients are generally small, but they increase with temperature.
View Article and Find Full Text PDFACS Nano
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, College of Science, University of Nevada, Reno, Nevada 89557, United States.
We discuss the goals and the need for quantum information science (QIS) in chemistry. It is important to identify concretely how QIS matters to chemistry, and we articulate some of the most pressing and interesting research questions at the interface between chemistry and QIS, that is, "chemistry-centric" research questions relevant to QIS. We propose in what ways and in what new directions the field should innovate, in particular where a chemical perspective is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!