Enhanced HTS hit selection via a local hit rate analysis.

J Chem Inf Model

PGRD Groton Laboratories, Pfizer Inc., Groton, Connecticut 06340, USA.

Published: October 2009

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was approximately 2.3-fold and approximately 1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci900113dDOI Listing

Publication Analysis

Top Keywords

hit selection
12
local hit
12
hit rate
12
primary screen
12
false negatives
12
rate analysis
8
false positives
8
compounds misidentified
8
active compounds
8
screen activity
8

Similar Publications

Alzheimer's disease (AD) is characterized as a neurodegenerative disorder that is caused by plaque formation by accumulating β-amyloid (Aβ), leading to neurocognitive function and impaired mental development. Thus, targeting Aβ represents a promising target for the development of therapeutics in AD management. Several functionalized sulfonic acid molecules have been reported, including tramiprosate prodrug, which is currently in clinical trial III and exhibits a good response in mild to moderate AD patients.

View Article and Find Full Text PDF

Functionalized 2D multilayered MXene for selective and continuous recovery of rare earth elements from real wastewater matrix.

J Hazard Mater

January 2025

Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark. Electronic address:

Rare earth elements (REEs) are the "fuel" for high-tech industry, yet their selective recovery from complex waste matrices is challenging. Herein, we designed a 2D multilayered MXene TiCT adsorbent for selective extraction of REEs in a broad pH range. By establishing strong Lewis acid-base interactions, extraction capacities of TiCT to Eu(III) and Ho(III) reached 892.

View Article and Find Full Text PDF

Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots.

View Article and Find Full Text PDF

Microfluidic droplet sorting has emerged as a powerful technique for a broad spectrum of biomedical applications ranging from single cell analysis to high-throughput drug screening, biomarker detection and tissue engineering. However, the controlled and reliable retrieval of selected droplets for further off-chip analysis and processing is a significant challenge in droplet sorting, particularly in high-throughput applications with low expected hit rates. In this study, we present a microfluidic platform capable of sorting and dispensing individual droplets with minimal loss rates.

View Article and Find Full Text PDF

Identification of Unique Binding Mode Anti-NTF3 Antibodies from a Novel Long VH CDR3 Phage Display Library.

SLAS Discov

January 2025

Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK. Electronic address:

Neurotrophic factor 3 (NTF3) is a cysteine knot protein and a member of the nerve growth factor (NGF) family of cytokines. NTF3 engages the Trk family of receptor tyrosine kinases, playing a pivotal role in the development and function of both the central and peripheral nervous systems. Its involvement in neuronal survival, differentiation, and growth links NTF3 to a spectrum of neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!