An investigation was made on the soil seed banks in the logging gaps of Populus davidiana--Betula platyphylla secondary forest, secondary broad-leaved forest, and broad-leaved Korean pine mixed forest at their different succession stages in Changbai Mountains. Among the test forests, secondary broad-leaved forest had the highest individual density (652 ind x m(-2)) in its soil seed bank. With the succession of forest community, the diversity and uniformity of soil seed bank increased, but the dominance decreased. The seed density of climax species such as Pinus koraiensis, Abies nephrolepis, and Acer mono increased, whereas that of Maackia amurensis and Fraxinus mandshurica decreased. Moreover, the similarity in species composition between soil seed bank and the seedlings within logging gaps became higher. The individual density and similarity between soil seed bank and the seedlings in non-logging gaps were similar to those in logging gaps. All of these indicated that soil seed bank provided rich seed resources for forest recovery and succession, and the influence of soil seed bank on seedlings regeneration increased with the succession.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil seed
32
seed bank
24
logging gaps
16
bank seedlings
12
seed
10
seed banks
8
banks logging
8
succession stages
8
stages changbai
8
secondary broad-leaved
8

Similar Publications

Dry evergreen Afromontane forests are severely threatened due to the expansion of agriculture and overgrazing by livestock. The objective of this study was to investigate the composition of woody species, structure, regeneration status and plant communities in Seqela forest, as well as the relationship between plant community types and environmental variables. Systematic sampling was used to collect vegetation and environmental data from 52 (20 m x 20 m) (400 m2) plots.

View Article and Find Full Text PDF

Insecticides may facilitate the escape of weeds from biological control.

PeerJ

January 2025

Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.

Background: Preventative pesticide seed treatments (hereafter preventative pest management or PPM) are common corn and soybean treatments, and often include both fungicides and neonicotinoid insecticides. While PPM is intended to protect crops from soil-borne pathogens and early season insect pests, these seed treatments may have detrimental effects on biological control of weed seeds by insects.

Methods: Here, in two 3-year corn-soy rotations in Pennsylvania USA, we investigated a PPM approach to insect management compared to an integrated pest management approach (IPM) and a "no (insect) pest management" (NPM) control.

View Article and Find Full Text PDF

In recent years, black beans (Phaseolus vulgaris L.) have gained popularity in the U.S.

View Article and Find Full Text PDF

Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (G).

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!