AI Article Synopsis

  • This study investigates how the expression of MT1-MMP and TIMP-2 changes in skeletal muscle after injury, particularly in mice subjected to a cold probe injury.
  • Results showed significant decreases in MT1-MMP and TIMP-2 mRNA levels at various time points post-injury, while MMP-9 expression increased notably within the first 48 hours.
  • The findings suggest that muscle injury triggers a biochemical response that elevates the soluble form of MT1-MMP, potentially aiding in the remodeling of the extracellular matrix around injured muscle tissue.

Article Abstract

This study characterizes the temporal relationship of membrane type-1 matrix metalloproteinase (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in skeletal muscle following injury. Tibialis anterior (TA) muscles from 60 mice were exposed and injured by applying a cold steel probe (-79 degrees C) to the muscle for 10 s. Thereafter, TA muscles from uninjured and injured legs were collected at 3, 10, 24, 48, and 72 h postinjury for analysis of local MT1-MMP, TIMP-2, and matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) mRNA and protein content via quantitative RT-PCR, immunoblotting, zymography, and immunofluorescence. All data are expressed as fold change of injured leg vs. uninjured leg. MT1-MMP mRNA levels were decreased significantly at 48 and 72 h postinjury by approximately 9- and 21-fold, respectively (P < 0.01). Both TIMP-2 and MMP-2 mRNA expression significantly decreased in the injured leg by approximately 4- to 10-fold at 10-72 h postinjury (P < 0.01). MMP-9 mRNA expression was significantly increased at 10, 24, and 48 h postinjury by 6- (P < 0.05), 25-, and 12-fold (P < 0.01), respectively. Protein content of latent (63 kDa) MT1-MMP was decreased at 48 and 72 h postinjury by approximately 2-fold (P < 0.01). Content of the soluble (50 kDa) fragment of MT1-MMP was significantly increased by approximately 17-, 25-, and 67-fold at 24 (P < 0.05), 48, and 72 h (P < 0.01) postinjury, respectively. TIMP-2 protein levels diminished from 3 to 48 h postinjury by 1.5-fold to 1.8-fold (P < 0.01), before returning to baseline levels at 72 h postinjury. Zymography revealed visual increases in gelatinase activity in molecular weight regions corresponding to MMP-9 and MMP-2. In conclusion, skeletal muscle injury initiates a sequence of events in the MT1-MMP proteolytic cascade resulting in elevated levels of the soluble (50 kDa) fragment of MT1-MMP, which could enhance pericellular extracellular matrix remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00217.2009DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
muscle injury
12
mrna protein
8
protein levels
8
tissue inhibitor
8
inhibitor metalloproteinase-2
8
postinjury
8
mmp-9 mrna
8
protein content
8
injured leg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!