The mechanism for the association of type 1 diabetes (T1D) with IL2RA remains to be clarified. Neither of the two distinct, transmission-disequilibrium confirmed loci mapping to this gene can be explained by a coding variant. An effect on the levels of the soluble protein product sIL-2RA has been reported but its cause and relationship to disease risk is not clear. To look for an allelic effect on IL2RA transcription in cis, we examined RNA from 48 heterozygous lymphocyte samples for differential allele expression. Of the 48 samples, 32 showed statistically significant allelic imbalance. No known single nucleotide polymorphism (SNP) had perfect correlation with this transcriptional effect but the one that showed the most significant (p = 1.6 x 10(-5)) linkage disequilibrium with it was the SNP rs3118470. We had previously shown rs3118470 to confer T1D susceptibility in a Canadian dataset, independently of rs41295061 as the major reported locus (p = 5 x 10(-3), after accounting for rs41295061 by conditional regression). Lower IL2RA levels consistently originated from the T1D predisposing allele. We conclude that an as yet unidentified variant or haplotype, best marked by rs3118470, is responsible for this independent effect and increases T1D risk through diminished expression of the IL-2R, likely by interfering with the proper development of regulatory T cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0901337DOI Listing

Publication Analysis

Top Keywords

cis-acting regulatory
4
regulatory variant
4
il2ra
4
variant il2ra
4
il2ra locus
4
locus mechanism
4
mechanism association
4
association type
4
type diabetes
4
t1d
4

Similar Publications

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice.

Plant Sci

January 2025

Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice.

View Article and Find Full Text PDF

White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited.

View Article and Find Full Text PDF

Identification of Kunitz-Type Inhibitor Gene Family of Reveals a Stress Tolerance Function in Inverted Cuttings.

Int J Mol Sci

December 2024

Key Laboratory for Forest Genetics and Tree Improvement and Propagation in University of Yunnan Province, Southwest Forestry University, Kunming 650224, China.

Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in . In this study, we conducted a genome-wide study of the family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment.

View Article and Find Full Text PDF

The Identification and Characterization of the Gene Family in Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of .

Int J Mol Sci

December 2024

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.

Oliv. typically has four kinds of heteromorphic leaves: linear (Li), lanceolate (La), ovate (Ov) and broad ovate (Bo). Heteromorphic leaves help adapt to extreme desert environments and further contribute to protection against land desertification in Northwest China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!