Eosinophils (Eos) are found at increased numbers within necrotic areas of tumors. We show that necrotic material from cell lysates containing damage-associated molecular pattern molecules induce eosinophil degranulation (release of major basic protein and eosinophil peroxidase) and enhance their oxidative burst while the stimulatory capacity of cell lysates is significantly diminished following oxidation. High mobility group box 1 (HMGB1), a prototypic damage-associated molecular pattern molecule, released following necrosis but not apoptosis, induced a similar effect on Eos. Additionally, we demonstrate that HMGB1 enhances eosinophil survival and acts as a chemoattractant. Consistently, we show that Eos express an HMGB1 receptor, the receptor for advanced glycation end product, and that anti-receptor for advanced glycation end product could diminish the HMGB1-mediated effects. Of all tested biologic activities, Eos respond most sensitively to the presence of necrotic material including HMGB1 with generation of peroxide. We postulate that Eos "sense" necrotic cell death, migrating to and responding to areas of tissue injury/necrosis. Oxidation of cell lysates reduces their biologic activity when compared with native lysates. We postulate that eosinophil-associated modulation of immunity within tumor and other damaged tissues may be primarily by promoting oxidative degradation of necrotic material. Novel therapeutic strategies may be considered by advancing oxidative denaturation of released necrotic material using Eos or other aerobic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900504DOI Listing

Publication Analysis

Top Keywords

necrotic material
16
damage-associated molecular
12
molecular pattern
12
cell lysates
12
pattern molecules
8
advanced glycation
8
glycation product
8
eos
6
necrotic
6
eosinophils oxidize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!