Neural cell differentiation involves a complex regulatory signal transduction network in which Ca(2+) ions and the secretory pathway play pivotal roles. The secretory pathway Ca(2+)-ATPase isoform 1 (SPCA1) is found in the Golgi apparatus where it is actively involved in the transport of Ca(2+) or Mn(2+) from the cytosol to the Golgi lumen. Its expression during brain development in different types of neurons has been documented recently, which raises the possibility that SPCA1 contributes to neuronal differentiation. In the present study, we investigated the potential impact of SPCA1 on neuronal polarization both in a cell line and in primary neuronal culture. In N2a neuroblastoma cells, SPCA1 was immunocytochemically localized in the juxtanuclear Golgi. Knockdown of SPCA1 by RNA interference markedly delayed the differentiation in these cells. The cells retarded in differentiation showed increased numbers of neurites of reduced length compared with control cells. Ca(2+) imaging assays showed that the lack of SPCA1 impaired Golgi Ca(2+) homeostasis and resulted in disturbed trafficking of different classes of proteins including normally Golgi-localized cameleon GT-YC3.3, bearing a Golgi-specific galactosyltransferase N terminus, and a normally plasma membrane-targeted, glycosyl phosphatidyl inositol-anchored cyan fluorescent protein construct. Also in hippocampal primary neurons, which showed a differential distribution of SPCA1 expression in Golgi stacks depending on differentiation stage, partial silencing of SPCA1 resulted in delayed differentiation, whereas total suppression drastically affected the cell survival. The disturbed overall cellular Ca(2+) homeostasis and/or the altered targeting of organellar proteins under conditions of SPCA1 knockdown highlight the importance of SPCA1 function for normal neural differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666140 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2014-09.2009 | DOI Listing |
Sci Rep
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.
Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating diverse neuronal functions in an activity-dependent manner. Although BDNF is synthesized primarily in neurons, astrocytes can also supply BDNF through various routes, including the recycling of neuron-derived BDNF. Despite accumulating evidence for astrocytic BDNF uptake and resecretion of neuronal BDNF, the detailed mechanisms underlying astrocytic BDNF recycling remain unclear.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
There are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation.
View Article and Find Full Text PDFThe structure and function of the mammalian gut vary by region, yet why inflammatory diseases manifest in specific regions and not others remains unclear. We use a TNF-overexpressing Crohn's disease (CD) model (Tnf ), which typically presents in the terminal ileum (TI), to investigate how environmental factors interact with the host's immune susceptibility to drive region-specific disease. We identified , an intracellular bacterium and murine counterpart to the human sexually transmitted , as necessary and sufficient to trigger disease manifestation in the ascending colon (AC), another common site of human CD.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People's Republic of China.
Purpose: Myocardial infarction (MI) is a prevalent cardiovascular disorder affecting individuals worldwide. There is a need to identify more effective therapeutic agents to minimize cardiomyocyte damage and enhance cardioprotection. extract is extensively used to treat neurological disorders and peripheral vascular diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!