Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline.

J Neurosci

Department of Physiology, Center for Neuroscience, Queen's University, Canadian Institute for Health Research Group in Sensory-Motor Integration, Kingston, Ontario, Canada.

Published: September 2009

It is well established that long, descending axons of the adult mammalian spinal cord do not regenerate after a spinal cord injury (SCI). These axons do not regenerate because they do not mount an adequate regenerative response and growth is inhibited at the injury site by growth cone collapsing molecules, such as chondroitin sulfate proteoglycans (CSPGs). However, whether axons of axotomized spinal interneurons regenerate through the inhibitory environment of an SCI site remains unknown. Here, we show that cut axons from adult mammalian spinal interneurons can regenerate through an SCI site and form new synaptic connections in vivo. Using morphological and immunohistochemical analyses, we found that after a midsagittal transection of the adult feline spinal cord, axons of propriospinal commissural interneurons can grow across the lesion despite a close proximity of their growth cones to CSPGs. Furthermore, using immunohistochemical and electrophysiological analyses, we found that the regenerated axons conduct action potentials and form functional synaptic connections with motoneurons, thus providing new circuits that cross the transected commissures. Our results show that interneurons of the adult mammalian spinal cord are capable of spontaneous regeneration after injury and suggest that elucidating the mechanisms that allow these axons to regenerate may lead to useful new therapeutic strategies for restoring function after injury to the adult CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666142PMC
http://dx.doi.org/10.1523/JNEUROSCI.0897-09.2009DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
adult mammalian
12
mammalian spinal
12
spinal
8
axons
8
regenerate spinal
8
cord injury
8
injury adult
8
adult feline
8
axons adult
8

Similar Publications

Background: Metastatic spine tumor surgery (MSTS) is often complex and extensive leading to significant blood loss. Allogeneic blood transfusion (ABT) is the mainstay of blood replenishment but with immune-mediated postoperative complications. Alternative blood management techniques (salvaged blood transfusion [SBT]) allow us to overcome such complications.

View Article and Find Full Text PDF

Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans.

PLoS Genet

January 2025

Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.

Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Research over the past 20 years indicates the amount of task-specific walking practice provided to individuals with stroke, brain injury, or incomplete spinal cord injury can strongly influence walking recovery. However, more recent data suggest that attention towards 2 other training parameters, including the intensity and variability of walking practice, may maximize walking recovery and facilitate gains in non-walking outcomes. The combination of these training parameters represents a stark contrast from traditional strategies, and confusion regarding the potential benefits and perceived risks may limit their implementation in clinical practice.

View Article and Find Full Text PDF

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!