Mechanical tension alters semaphorin expression in the periodontium.

J Periodontol

Department of Cell Biology and Anatomy, Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Science Center, New Orleans, LA 70119, USA.

Published: October 2009

Background: Periodontal remodeling requires coordinated cell movement. Semaphorins are cell-surface signals that regulate cell migration and may be differentially regulated by periodontal cells. Mechanical tension can regulate periodontal ligament (PDL) remodeling. We predicted that mechanical tension alters the expression of the subset of semaphorins in the periodontium likely to be most involved with regulating the remodeling of this tissue.

Methods: PDL and gingival cells were exposed to mechanical tension, and their attachment and movement on collagen matrices were evaluated. Alterations in extracellular matrix and semaphorin transcript expression were monitored by semiquantitative reverse transcription-polymerase chain reaction.

Results: Mechanical tension induced osteoclast regulatory transcripts in the PDL cells to a greater extent than gingival fibroblasts, increasing the expression of osteoprotegerin and decreasing receptor activator of nuclear factor-kappa B ligand. These mechanical forces reduced PDL cell mingling, without altering cell attachment or motility. Concurrently, these forces induced dynamic changes in several semaphorin molecules in PDL cells, increasing semaphorin 3D and 5B and decreasing semaphorin 7A. In addition, plexin transcript expression was altered, decreasing plexin A1 and increasing plexin C1. These changes were different than those observed in gingival fibroblasts.

Conclusions: These data suggest that a subset of semaphorins and plexins are dynamically regulated in the PDL. Because these molecules may be involved in cell guidance, changes in semaphorins may play a pivotal role in periodontal remodeling, affecting angiogenesis or PDL cell invasion into sites of injury.

Download full-text PDF

Source
http://dx.doi.org/10.1902/jop.2009.090212DOI Listing

Publication Analysis

Top Keywords

mechanical tension
20
tension alters
8
periodontal remodeling
8
subset semaphorins
8
transcript expression
8
pdl cells
8
pdl cell
8
pdl
7
mechanical
6
cell
6

Similar Publications

Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct data-driven intelligent models to predict crude oil - nitrogen IFT based upon experimental data of real crude oils samples encountered in underground oil reservoirs.

View Article and Find Full Text PDF

Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.

View Article and Find Full Text PDF

Over the past 20-30 years, numerous studies have expanded our understanding of the connective components within the human musculoskeletal system. The term "fascia" and, more specifically, the "fascial system" encompass a variety of connective tissues that perform multiple functions. Given the extensive scope of the topic of fascia and the fascial system, which cannot be fully addressed in a single article, this work will focus specifically on the role of fascia in tension transmission (mechanotransduction).

View Article and Find Full Text PDF

Hyperelastic materials are extensively incorporated in medical implants and microelectromechanical systems due to their large, elastic, recoverable strains. However, their mechanical properties are sensitive to processing parameters that may lead to inconsistent characterization. Various test setups have been employed for characterizing hyperelastic materials; however, they are often costly.

View Article and Find Full Text PDF

This dataset comprises a comprehensive collection of videos and images illustrating the fluid dynamics of swallowing and aspiration in a patient-specific pharyngolaryngeal model with varying epiglottis angles. The data also includes the physical properties of the fluids used, comprising dynamic viscosity, surface tension, and contact angle. Videos under varying swallowing conditions were collected to investigate the mechanisms underlying aspiration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!