We present an efficient implementation of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], which expresses the nonlocal correlation energy as a double spatial integral. We factorize the integration kernel and use fast Fourier transforms to evaluate the self-consistent potential, total energy, and atomic forces, in O(NlogN) operations. The resulting overhead, for medium and large systems, is a small fraction of the total computational cost, representing a dramatic speedup over the O(N(2)) evaluation of the double integral. This opens the realm of first-principles simulations to the large systems of interest in soft matter and biomolecular problems. We apply the method to calculate the binding energies and the barriers for relative translation and rotation in double-wall carbon nanotubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.096102 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Surgery & Cancer, Imperial College London, London, UK.
Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.
View Article and Find Full Text PDFStat Med
February 2025
U.S. Food and Drug Administration, Silver Spring, Maryland.
The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany.
The radiotracer [F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be linked to the pharmacologically active Lys-urea-Glu motif. Although this procedure could be automated on two-reactor modules like the GE TRACERLab FX2N (FXN) to afford the tracer in modest radiochemical yields (RCY) of 18-25%, it is unsuitable for cassette-based systems with a single reactor. To simplify implementation on an automated synthesis module, the radiosynthesis of [F]JK-PSMA-7 was devised as a one-pot, two-step reaction.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
To automate the quality control of painted surfaces of heating devices, an automatic defect detection and classification system was developed by combining deflectometry and bright light-based illumination on the image acquisition, deep learning models for the classification of non-defective (OK) and defective (NOK) surfaces that fused dual-modal information at the decision level, and an online network for information dispatching and visualization. Three decision-making algorithms were tested for implementation: a new model built and trained from scratch and transfer learning of pre-trained networks (ResNet-50 and Inception V3). The results revealed that the two illumination modes employed widened the type of defects that could be identified with this system, while maintaining its lower computational complexity by performing multi-modal fusion at the decision level.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
This paper presents a novel rail-to-rail Class-AB operational amplifier tailored for wake-up systems in motion sensor applications. By addressing limitations in free Class-AB designs, such as large inrush current, unstable bias conditions, and area ineffiiency, the proposed design achieves a gain of 59 dB and unity gain frequency of 550 kHz driving a 5 pF load. The inrush current is reduced from 1 mA to 7 µA, increasing the battery life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!