Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of electron cyclotron resonance heating (ECRH) on the toroidal rotation velocity profile has been investigated in the JT-60U tokamak device by separating the effects of the change in momentum transport, the intrinsic rotation by pressure gradient, and the intrinsic rotation by ECRH. It is found that ECRH increases the toroidal momentum diffusivity and the convection velocity. It is also found that ECRH drives the codirection (co) intrinsic rotation inside the EC deposition radius and the counterdirection (ctr) intrinsic rotation outside the EC deposition radius. This ctr rotation starts from the EC deposition radius and propagates to the edge region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.065003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!