We experimentally investigate an optical clock based on ;{171}Yb (I = 1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4 x 10;{-16}, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.103.063001DOI Listing

Publication Analysis

Top Keywords

optical lattice
8
clock transition
8
clock
5
spin-1/2 optical
4
lattice clock
4
clock experimentally
4
experimentally investigate
4
investigate optical
4
optical clock
4
clock based
4

Similar Publications

Stable quantum droplets with high-order vorticity in zero-order Bessel lattice.

Sci Rep

January 2025

School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

A theoretical framework is presented to investigate the stability of novel two-dimensional quantum droplets within zeroth-order Bessel lattices. The evolution of quantum droplets is studied by the Gross-Pitaevskii equations with Lee-Huang-Yang corrections. The circular groove structure inherent in the zeroth-order Bessel lattice potential facilitates the formation of distinct configurations, including stable zero-vorticity annular quantum droplets and annular quantum droplets featuring embedded vorticity.

View Article and Find Full Text PDF

Plasmonic surface lattice resonance (SLR) is a phenomenon in which individual localized surface plasmon resonances (LSPRs) excited in periodically-arranged plasmonic nanoparticles couple through the interaction with the propagating diffracted incident light. The SLR optical absorption peak is by at least one order of magnitude more intense than the LSPR one, making SLR superior for applications in which LSPR is commonly used. Recently, we have developed a route for the fabrication of spherical virus-like particles (VLPs) with plasmonic Au cores and protein coronas, where the LSPR in the cores amplifies vibrational Raman signals originating from protein-antibody interactions [ACS Synth.

View Article and Find Full Text PDF

Topological Moiré Polaritons.

Phys Rev Lett

December 2024

Clermont INP, Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France.

The combination of an in-plane honeycomb potential and of a photonic spin-orbit coupling (SOC) emulates a photonic or polaritonic analog of bilayer graphene. We show that modulating the SOC magnitude allows us to change the overall lattice periodicity, emulating any type of moiré-arranged bilayer graphene with unique all-optical access to the moiré band topology. We show that breaking the time-reversal symmetry by an effective exciton-polariton Zeeman splitting opens a large topological gap in the array of moiré flat bands.

View Article and Find Full Text PDF

The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.

View Article and Find Full Text PDF

By utilizing the time inversion of radiation from spatial dipole arrays, we propose a method for constructing the spatial lattice-type skyrmion arrays under 4 focusing conditions, including Néel-, Bloch-, and Anti-skyrmions/merons. The Richards-Wolf vector diffraction theory is applied to analyze the radiation field emitted by dipole arrays, aiming to determine the incident field required under a high numerical aperture (NA=0.95).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!