Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We consider microscopically low-temperature transport in weakly disordered arrays of Josephson junctions in the Coulomb blockade regime. We demonstrate that at sufficiently low temperatures the main contribution to the dc conductivity comes from the motion of single-Cooper-pair excitations, scattered by irregularities in the array. Being proportional to the concentration of the excitations, the conductivity is exponentially small in temperature with the activation energy close to the charging energy of a Cooper pair on a superconductive island. Applying a diagrammatic approach to treat the disorder potential we calculate the Drude-like conductivity and obtain weak localization corrections. At sufficiently low temperatures or strong disorder the Anderson localization of Cooper pairs ensues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.127001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!