We present a novel fundamental phenomenon occurring when a polarized beam of light is observed from a reference frame tilted with respect to the direction of propagation of the beam. This effect has a purely geometric nature and amounts to a polarization-dependent shift or split of the beam intensity distribution evaluated as the time-averaged flux of the Poynting vector across the plane of observation. We demonstrate that such a shift is unavoidable whenever the beam possesses a nonzero transverse angular momentum. This latter result has general validity and applies to arbitrary systems such as, e.g., electronic and atomic beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.100401 | DOI Listing |
Sci Adv
December 2024
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
Optical spin and orbital angular momenta are intrinsic characteristics of light determined by its polarization and spatial degrees of freedom, respectively. At the nanoscale, sharply focused structured light carries coupled spin-orbital angular momenta with complex 3D nearfield structures, crucial for manipulating multidimensional information of light in nanophotonics. However, characterizing these interactions faces challenges with conventional farfield-based methods, which typically lack the essential accuracy and resolution to interrogate the structured nearfield with high fidelity.
View Article and Find Full Text PDFNanophotonics
November 2024
School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China.
We report a transverse optical torque exerted on a conventional isotropic spherical particle in a direction perpendicular to that of the illuminating wave propagation. By using full-wave simulations and deriving an analytical expression of the transverse optical torque for particle of arbitrary size, the origin of this transverse optical torque is traced exclusively to the magnetic part of the spin angular momentum, regardless of the size and composition of the illuminated particle. To our surprise, for a non-magnetic dielectric particle, the transverse optical torque is found to originate mainly from the magnetic response of the particle, even when the particle size is much smaller than the illuminating wavelength.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Orthodontics, Ulm University, Ulm, Germany.
Objectives: In orthodontics, accurate registration of jaw relationships is essential for correct diagnosis and treatment planning. Therefore, accuracy of the digital spatial registration of maxillary and mandibular models and - for the first time-the influence of dentition stage and malocclusion type on this procedure were investigated under controlled conditions.
Materials And Methods: Eight pairs of jaw models, representing different occlusal and developmental statuses (m1-m8), were scanned using two IOS types (PS: Primescan; TR: Trios4).
Phys Rev Lett
November 2024
Argonne National Laboratory, Argonne, Illinois 60439, USA.
Nanophotonics
August 2024
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!