A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electron transfers in proteins: investigations with a modified through-bond coupling model. | LitMetric

Electron transfers in proteins: investigations with a modified through-bond coupling model.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Theoretical Chemistry, Shandong University, Jinan, 250100 Shandong, People's Republic of China.

Published: August 2009

By integrating the merits of previous models, a modified through-bond coupling (MTBC) model is proposed in this work and shows obvious improvement compared with previous models. With the MTBC model, the dominant electron coupling pathways in the polypeptide chains were identified, where the N-H bonds were found to be essential to the electron couplings. The local structures of peptides and proteins were finely characterized by the electron couplings and decay factors since they are structure sensitive. The neighboring carbonyl O-O distances are qualitatively correlated with the decay factors, and the deviations from the transconfigurations will weaken the coupling interactions. When the two amino acids being studied are not close in sequence, the couplings through hydrogen bonds are probably the main pathway because the electron transfers in this way save many steps, albeit the decay factor is less than that of per bond, consistent with the classical electron-tunneling model developed by Beratan [Science 252, 1285 (1991)]. It was found that the MTBC model can be effectively extended to study the electron transfers in complex biological systems with the combination of the fragment approach, which takes into account the contributions of key hydrogen bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.021927DOI Listing

Publication Analysis

Top Keywords

electron transfers
12
mtbc model
12
modified through-bond
8
through-bond coupling
8
previous models
8
electron couplings
8
decay factors
8
hydrogen bonds
8
electron
6
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!