Switching mechanism in periodically driven quantum systems with dissipation.

Phys Rev E Stat Nonlin Soft Matter Phys

Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany.

Published: August 2009

We introduce a switching mechanism in the asymptotic occupations of quantum states induced by the combined effects of a periodic driving and a weak coupling to a heat bath. It exploits one of the ubiquitous avoided crossings in driven systems and works even if both involved Floquet states have small occupations. It is independent of the initial state and the duration of the driving. As a specific example of this general switching mechanism we show how an asymmetric double well potential can be switched between the lower and upper well by a periodic driving that is much weaker than the asymmetry.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.021117DOI Listing

Publication Analysis

Top Keywords

switching mechanism
12
periodic driving
8
mechanism periodically
4
periodically driven
4
driven quantum
4
quantum systems
4
systems dissipation
4
dissipation introduce
4
introduce switching
4
mechanism asymptotic
4

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.

Nat Commun

December 2024

Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.

The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions.

View Article and Find Full Text PDF

Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions.

Nat Commun

December 2024

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.

View Article and Find Full Text PDF

Due to its "ferroionic" nature, CuInPS combines switchable ferroelectric polarization with highly mobile Cu ions, allowing for multiple resistance states. Its conductive mechanism involves ferroelectric switching, ion migration, and corresponding intercoupling, which are highly sensitive to external electric field. Distinguishing the dominant contribution of either ferroelectric switching or ion migration to dynamic conductivity remains a challenge and the conductive mechanism is not clear yet.

View Article and Find Full Text PDF

Emotional flexibility refers to an individual's ability to change emotional responses in constantly changing environments to adapt to different situations. This study aims to use the Emotional Switching Task (EST) paradigm, combined with Electroencephalogram (EEG) technology and behavioral experiments, to explore the impact of emotional valence shift directions and preparation effects on the switching cost of emotional flexibility. The results found that when individuals switch from positive emotional valence to positive emotional valence, the switching cost is smaller than other transition directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!