Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source.

Rev Sci Instrum

Fairway Medical Technologies, 9431 West Sam Houston Parkway South, Houston, Texas 77099, USA.

Published: September 2009

Comprehensive characterization of wideband ultrasonic transducers and specifically optoacoustic detectors is achieved through the analysis of their frequency response as a function of the incident angle. The tests are performed under well-defined, repeatable operating conditions. Backillumination of a blackened, acoustically matched planar surface with a short laser pulse creates an acoustic impulse which is used as a wideband ultrasonic source. Upon illumination with a short laser pulse, the bandwidth of our source shows a -6 dB point of 12 MHz and a low-frequency roll-off around 300 kHz. Using proprietary software, we examine thoroughly the planarity of the emitted wave front within a specified amplitude cutoff and phase incoherence. Analysis of the angular dependence of the frequency response yields invaluable directivity information about the detector under study: a necessary component toward accurate optoacoustic image reconstruction and quantitative tomography. The laser ultrasonic source we developed is the main feature of our directivity measurement setup. Due to its simplicity, it can easily be adapted to various calibration devices. This paper focuses on the development and characterization of the flatness and the bandwidth of our wideband ultrasonic source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766411PMC
http://dx.doi.org/10.1063/1.3227836DOI Listing

Publication Analysis

Top Keywords

ultrasonic source
16
wideband ultrasonic
12
ultrasonic transducers
8
laser ultrasonic
8
frequency response
8
short laser
8
laser pulse
8
ultrasonic
6
source
5
measurement spectral
4

Similar Publications

Sensors play an important role in both the continuous monitoring and intermittent analyses, which are essential for the study of wastewater treatment plant management and conducting related research. Given the significant environmental impact of the issues involved, accurate measurement of the volume of water flowing into and out of treatment plants is a key parameter for plant management, ecotoxicological studies and academic research programs. Traditionally, flow measurements have been based on calibrated weirs or venturi flumes, using water level measurements for conversion into flow, according to established relationships.

View Article and Find Full Text PDF

Implantable Passive Sensors for Biomedical Applications.

Sensors (Basel)

December 2024

School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece.

Article Synopsis
  • Implantable sensors are becoming popular for localized and continuous monitoring in medical settings, allowing for early detection and timely interventions.
  • There are two main types of implantable sensors: active, which have more advanced functionalities but require a power source, and passive, which don't need power and offer simpler, smaller designs.
  • This review focuses on passive sensor technologies, discussing their materials, detection methods, clinical applications, advantages over active sensors, and important considerations for their packaging and compatibility with the human body.
View Article and Find Full Text PDF

Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.

View Article and Find Full Text PDF

Perfluorooctanesulfonic acid (PFOS) is one of the most investigated Per- and polyfluoroalkyl substances (PFAS) for being the strongest compound to eliminate and having adverse health concerns. In this work, we have conducted the sonochemical treatment of PFOS simulated water under high (500 kHz) and low (22 kHz) frequencies while monitoring the operational parameters via an integrated sonochemical system. The integrated advanced sonochemical system includes software to monitor treatment power, solution temperature and frequency while allowing distinctive control of the reaction conditions.

View Article and Find Full Text PDF

Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols.

Microorganisms

December 2024

UPIZ "Educational and Research Laboratory"-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria.

This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!