A hyperthermal atomic oxygen (AO) beam facility has been developed to investigate the collisions of high-velocity AO atoms with vapor-phase counterflow. Application of 4.5 kW, 2.4 GHz microwave power in the source chamber creates a continuous discharge in flowing O(2) gas. The O(2) feedstock is introduced into the source chamber in a vortex flow to constrain the plasma to the center region, with the chamber geometry promoting resonant excitation of the TM(011) mode to localize the energy deposition in the vicinity of the aluminum nitride (AlN) expansion nozzle. The approximately 3500 K environment serves to dissociate the O(2), resulting in an effluent consisting of 40% AO by number density. Downstream of the nozzle, a silicon carbide (SiC) skimmer selects the center portion of the discharge effluent, prior to the expansion reaching the first shock front and rethermalizing, creating a beam with a derived 2.5 km s(-1) velocity. Differential pumping of the skimmer chamber, an optional intermediate chamber and reaction chamber maintains a reaction chamber pressure in the mid-10(-6) to mid-10(-5) Torr range. The beam has been characterized with regard to total AO beam flux, O(2) dissociation fraction, and AO spatial profile using time-of-flight mass spectrometric and Kapton-H erosion measurements. A series of reactions AO+C(n)H(2n) (n=2-4) has been studied under single-collision conditions using mass spectrometric product detection, and at higher background pressure detecting dispersed IR emissions from primary and secondary products using a step-scan Michelson interferometer. In a more recent AO crossed-beam experiment, number densities and predicted IR emission intensities have been modeled using the direct simulation Monte Carlo technique. The results have been used to guide the experimental conditions. IR emission intensity predictions are compared to detected signal levels to estimate absolute reaction cross sections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3212676 | DOI Listing |
J Phys Chem Lett
December 2024
Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
In the dynamics of atoms and molecules at metal surfaces, electron-hole pair excitations can play a crucial role. In the case of hyperthermal hydrogen atom scattering, they lead to nonadiabatic energy loss and highly inelastic scattering. Molecular dynamics with electronic friction simulation results, based on an isotropic homogeneous electron gas approximation, have previously aligned well with measured kinetic energy loss distributions, indicating that this level of theoretical description is sufficient to describe nonadiabatic effects during scattering.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
Br J Surg
April 2024
Department of GI Surgery, Ghent University Hospital, Ghent, Belgium.
ACS Appl Mater Interfaces
April 2024
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile.
A β-cyclodextrin (β-CD) nanosponge (NS) was synthesized using diphenyl carbonate (DPC) as a cross-linker to encapsulate the antitumor drug cyclophosphamide (CYC), thus obtaining the NSs-CYC system. The formulation was then associated with magnetite nanoparticles (MNPs) to develop the MNPs-NSs-CYC ternary system. The formulations mentioned above were characterized to confirm the deposition of the MNPs onto the organic matrix and that the superparamagnetic nature of the MNPs was preserved upon association.
View Article and Find Full Text PDFLangmuir
April 2024
Sino-French Engineer School/School of General Engineering, Beihang University, Beijing 100191, China.
Graphene is one of the most promising thermal protection materials for high-speed aircraft due to its lightweight and excellent thermophysical properties. At high Mach numbers, the extremely high postshock temperature would dissociate the surrounding air into a mixture of atomic and molecular components in a highly thermochemical nonequilibrium state, which greatly affects the subsequent thermal chemical reactions of the graphene interface. Through establishing a reactive gas-solid interface model, the reactive molecular dynamics method is employed in this study to reveal the influences of the thermochemical nonequilibrium gas mixture on the thermal oxidation and nitridation mechanisms of graphene sheet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!