Nucleation of wetting films on cylindrical and spherical substrates: a numerical study by the string method.

J Chem Phys

Program in Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Published: September 2009

Using the mean-field diffuse-interface model for liquid-vapor system and employing the numerical string method, we study the critical nuclei involved in the prewetting transitions on curved substrates. We first introduce three distinct kinds of critical nuclei, namely, the disklike, bandlike, and layerlike ones, which respectively correspond to three possible growth modes of wetting films. We show the disklike growth mode to be the only mode for infinite planar substrates. We then turn to cylindrical and spherical substrates, the two simplest but most important geometries in the real world. We focus on the critical nuclei of finite size, through which the wetting films may be formed with finite thermodynamic probabilities. It is shown that the disklike growth mode is always the most probable for wetting film nucleation and growth as long as a disklike critical nucleus exists. It is also shown that on a cylindrical substrate, the disklike critical nucleus can no longer exist if the substrate radius is smaller than some critical value, comparable to the radius of the disklike critical nucleus on planar substrate. We find that on a cylindrical substrate whose radius is below the critical value, the nucleation and growth of a wetting film can only occur through the bandlike critical nucleus. It is worth emphasizing that the results concerning the bandlike and layerlike growth modes can only be obtained from the diffuse-interface model, beyond the macroscopic description based on the line and surface tensions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3239462DOI Listing

Publication Analysis

Top Keywords

critical nucleus
16
wetting films
12
critical nuclei
12
disklike critical
12
critical
9
cylindrical spherical
8
spherical substrates
8
string method
8
diffuse-interface model
8
bandlike layerlike
8

Similar Publications

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

Trigeminal nerve microstructure is linked with neuroinflammation and brainstem activity in migraine.

Brain

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.

Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.

View Article and Find Full Text PDF

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen that has caused severe economic losses in the swine industry. Screening key host immune-related genetic factors in the porcine alveolar macrophages (PAMs) is critical to improve the anti-virial ability in pigs.

Methods: In this study, an model was set to evaluate the anti-PRRSV effect of tylvalosin tartrates.

View Article and Find Full Text PDF

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!