Markov state models (MSMs) are a powerful tool for modeling both the thermodynamics and kinetics of molecular systems. In addition, they provide a rigorous means to combine information from multiple sources into a single model and to direct future simulations/experiments to minimize uncertainties in the model. However, constructing MSMs is challenging because doing so requires decomposing the extremely high dimensional and rugged free energy landscape of a molecular system into long-lived states, also called metastable states. Thus, their application has generally required significant chemical intuition and hand-tuning. To address this limitation we have developed a toolkit for automating the construction of MSMs called MSMBUILDER (available at https://simtk.org/home/msmbuilder). In this work we demonstrate the application of MSMBUILDER to the villin headpiece (HP-35 NleNle), one of the smallest and fastest folding proteins. We show that the resulting MSM captures both the thermodynamics and kinetics of the original molecular dynamics of the system. As a first step toward experimental validation of our methodology we show that our model provides accurate structure prediction and that the longest timescale events correspond to folding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766407PMC
http://dx.doi.org/10.1063/1.3216567DOI Listing

Publication Analysis

Top Keywords

markov state
8
state models
8
thermodynamics kinetics
8
progress challenges
4
challenges automated
4
automated construction
4
construction markov
4
models full
4
full protein
4
protein systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!