Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mammalian serine racemase (SR) is a pyridoxal-5'-phosphate (PLP) dependent enzyme responsible for the biosynthesis of the neurotransmitter D-serine, which activates N-methyl-D-aspartate (NMDA) receptors in the CNS. Aberrant regulation of NMDA receptor signaling has been implicated in a variety of neuropathologies, and inhibitors of SR would therefore be a worthwhile tool for further investigation or treatment of such conditions. Here, we identify a series of small aliphatic hydroxamic acids (HAs) that act as potent SR inhibitors. However, specificity studies showed that some of these HAs can act as nonspecific inhibitors of PLP-dependent enzymes. We employed NMR, MS, and UV/vis spectroscopic techniques to reveal that the nonspecific effect is likely due to irreversible interaction of the HA moiety with PLP to form aldoxime species. We also characterize L-aspartic acid beta-hydroxamate as a competitive and selective SR inhibitor that could be used as a scaffold for further inhibitor development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm900775q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!