Binding of organometallic ruthenium(II) anticancer compounds to nucleobases: a computational study.

J Phys Chem A

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Published: October 2009

The reaction of the anticancer compound [(eta(6)-benzene)Ru(en)(OH(2))](2+) (1) toward the nucleobases guanine, adenine, and cytosine is studied computationally using DFT/BP86 calculations. The aqua leaving group of such compounds is known to undergo ligand exchange reactions with nucleophilic centers in DNA and preferentially with the N7 atom of guanine, N7(G). Our results show that an H-bonded reactant adduct with nucleobases is formed via either the aqua ligand (cis adduct) or the en (ethylenediamine) ligand (trans adduct) of 1. All studied nucleobases favor an H-bonded cis adduct. Only guanine forms also a trans reactant adduct in the gas phase. The guanine N7 and O6 atoms in this trans adduct are situated in an ideal position to form each a strong H-bond to both amino groups of the en ligand of 1. A docking study shows that this unique recognition pattern is also plausible for the interaction with double stranded DNA. For the reaction of 1 with guanine, we identified three different reaction pathways: (i) A cis (G)N7-Ru-OH(2) transition state (TS). (ii) A direct trans reaction pathway. (iii) A 2-step trans mechanism. The activation energies for the cis pathway are smaller than for the trans pathways. The ultimately formed Ru-N7(G) product is characterized by a thermally stable H-bond between the O6(G) and a diamine-NH(2) hydrogen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp903237wDOI Listing

Publication Analysis

Top Keywords

reactant adduct
8
cis adduct
8
trans adduct
8
adduct
6
trans
6
guanine
5
binding organometallic
4
organometallic rutheniumii
4
rutheniumii anticancer
4
anticancer compounds
4

Similar Publications

Article Synopsis
  • A cationic N-heterocyclic phosphenium iron tetracarbonyl complex was synthesized and its reactivity with various anionic reactants was investigated, resulting in different products depending on the anion involved.
  • Reactions with fluoride and chloride produced neutral diazaphospholenes, while bromide and iodide led to NHP iron halides through metal addition and decarbonylation.
  • At room temperature, the cationic complex primarily reduced to form a detectable Fe-centered radical, whereas at -78 °C, CH-metalation was favored, further evidenced by the characterization of a neutral borane-adduct.
  • The complex’s reactivity variations are attributed to its higher electrophilicity compared to neutral complexes
View Article and Find Full Text PDF

Enhanced production of jet fuel precursors via furfural/cyclopentanone aldol condensation by synergistic pairing TiO with nano-ZSM-5 zeolite.

Bioresour Technol

November 2024

Thermochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, E28935, Móstoles, Madrid, Spain; Group of Chemical and Environmental Engineering, Rey Juan Carlos University, C/ Tulipán s/n, E28933, Móstoles, Madrid, Spain. Electronic address:

Aldol condensation of biomass-derived compounds offers a sustainable route to jet fuel precursors. This study explores catalysts based on nanocrystalline ZSM-5 zeolite (n-ZSM-5) modified with various metals (Ca, Mg, Sn, Ti, Zr) for the aldol condensation of furfural (FFL) and cyclopentanone (CPO). While both reactants can enter the ZSM-5 micropores, the resulting C10 (FC) and C15 (FC) adducts are too large to be formed within or to exit the microporosity, being instead produced over the external acid sites.

View Article and Find Full Text PDF

Catalysis of multicomponent transformations requires controlled assembly of reactants within the active site. Supramolecular scaffolds possess synthetic microenvironments that enable precise modulation over noncovalent interactions (NCIs) engaged by reactive, encapsulated species. While molecular properties that describe the behavior of single guests in host cavities have been studied extensively, multicomponent transformations remain challenging to design and deploy.

View Article and Find Full Text PDF
Article Synopsis
  • A new method using gas chromatography-ion mobility spectrometry (IMS) with ammonia dopant is created to detect volatile nitrosamines in meat.
  • The method enhances sensitivity and resolving power while reducing interference from dimer ions by using ammonia.
  • It achieves detection limits between 0.78-1.79 ng/mL for nitrosamines, with good recovery rates, and successfully identifies these compounds in different meat products.
View Article and Find Full Text PDF

The addition of phosphines (PR) to Michael acceptors is a key step in many Lewis-base catalysed reactions. The kinetics of the reactions of ten phosphines with ethyl acrylate, ethyl allenoate, ethyl propiolate, ethenesulfonyl fluoride, and ethyl 2-butynoate in dichloromethane at 20 °C was followed by photometric and NMR spectroscopic methods. The experimentally determined second-order rate constants show that electronic effects in sterically unencumbered phosphines affect their nucleophilicity towards different classes of Michael acceptors in the same ordering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!