Studies were conducted to examine the effect of treating Zinnia elegans Jacq. with soluble silicon on the performance of the green peach aphid, Myzus persicae (Sulzer). Z. elegans plants were irrigated every 2 d throughout the duration of the experiment with a nutrient solution amended with potassium silicate (K2SiO2), or a nutrient solution without K2SiO2. Length of the prereproductive period and survivorship of M. persicae were not affected by K2SiO2 treatment, but total cumulative fecundity and the intrinsic rate of increase (r(m)) were slightly reduced on Z. elegans plants receiving soluble silicon. Quantification of silicon content in leaf tissues using inductively coupled plasma optical emission spectroscopy (ICP-OES) confirmed significantly higher silicon concentrations in plants treated with K2SiO2 compared with control plants. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was used to identify and quantify phenolic acids and flavonols in leaf tissue of Z. elegans. Compared with untreated control plants, significant elevations in 5-caffeoylquinic acid, p-coumaroylquinic acid, and rutin were detected in leaves of Z. elegans plants treated with K2SiO2, but none of seven other phenolics were significantly affected. Similarly, a slight elevation in guaiacol peroxidase activity was detected in plants treated with K2SiO2 Overall, these results indicate treatment of Z. elegans with soluble silicon provides a modest increase in resistance levels to M. persicae, which may be caused in part by defense-related compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/022.038.0116 | DOI Listing |
Langmuir
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres significantly impacts the detection signal values. In this study, an attempt was made to synthesize PS microspheres via one-step polymerization of styrene with an amphiphilic monomer (PEOOH), followed by swelling the silicon phthalocyanine photosensitizer into the PS microspheres, resulting in the functionalization of the PS microspheres with polyethylene glycol segments.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
PharmaEase Tech Limited, Sheung Wan, Hong Kong, China.
We develop a technology based on competitive adsorption between drug molecules and water, specifically designed to address the critical issue of poor drug solubility. By specially engineering silica nanosurfaces with ultrahigh densities of silanol, we significantly enhance their affinity for both drug molecules and water, with a notably greater increase in water affinity. Such surfaces can effectively adsorb a variety of drug molecules under dry conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer with limited treatment options, often associated with Merkel cell polyomavirus (MCPyV) and marked by hypoxic tumor microenvironments that promote resistance to therapies. Belzutifan, an FDA-approved hypoxia-inducible factor-2α (HIF-2α) inhibitor, has shown promise in inhibiting tumor growth; however, its clinical efficacy is hindered by its low solubility, rapid clearance, and limited bioavailability. In this study, we present a strategy using porous silicon (pSi) microparticles and nanoparticles as carriers for the sustained delivery of benzoate to MCC cells.
View Article and Find Full Text PDFLangmuir
January 2025
School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan.
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!