Pyrethroids, such as deltamethrin, are toxic substances that lead to generation of reactive oxygen species, which harm living organisms. We assessed the level and patterns of imbalance evolved by a single dose of 2 microg/L deltamethrin on the lipid peroxidation (LPO) and the antioxidant defense system of Carassius auratus gibelio liver and intestine, and monitored the recovery dynamics of these parameters during a 14-day post-exposure period. LPO and antioxidative defense mechanisms displayed different responses in the investigated tissues. Sudden increase of LPO in the liver, persisting at this elevated level throughout the test period, was observed on the third day post-exposure, while in the intestine significant enhancement of this parameter was recorded from the seventh day. Reduced glutathione (GSH) showed a transient increase in the liver, and was depleted in the intestine by the second day of exposure, with signs of recovery by the end of the experimental tenure. In the liver of fish a temporary inhibition of superoxide dismutase (SOD) and catalase (CAT) activity, and activation of glutathione peroxidase (GPX), glutathione transferase (GST), and glutathione reductase (GR) enzymes was observed, with maximum thresholds recorded on the third and second days, respectively. In the intestine a relevant increase in CAT and GST activity up to the second day and almost complete recovery by the end of the experiment was recorded, while for GR a continuous enhancement was apparent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-009-9401-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!