Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Advances in molecular cell biology, medical research, and drug development are driving a growing need for technologies that enable imaging the dynamics of molecular and physiological processes simultaneously in numerous non-adherent living cells. Here we describe a platform technology and software--the CKChip system--that enables continuous, fluorescence-based imaging of thousands of individual living cells, each held at a given position ("address") on the chip. The system allows for sequential monitoring, manipulation and kinetic analyses of the effects of drugs, biological response modifiers and gene expression in both adherent and non-adherent cells held on the chip. Here we present four specific applications that demonstrate the utility of the system including monitoring kinetics of reactive oxygen species generation, assessing the intracellular enzymatic activity, measuring calcium flux and the dynamics of target cell killing induced by conjugated cytotoxic T-lymphocytes. We found large variations among individual cells in the overall amplitude of their response to stimuli, as well as in kinetic parameters such as time of onset, initial rate and decay of the response, and frequency and amplitude of oscillations. These variations probably reflect the heterogeneity of even cloned cell populations that would have gone undetected in bulk cell measurements. We demonstrate the utility of the system in providing kinetic parameters of complex cellular processes such as Ca++ influx, transients and oscillations in numerous individual cells. The CKChip opens up new opportunities in cell-based research, in particular for acquiring fluorescence-based, kinetic data from multiple, individual non-adherent cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b904778f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!